- -

Experimental and Theoretical Study of SbPO4 under Compression

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental and Theoretical Study of SbPO4 under Compression

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pereira, André Luis de Jesus es_ES
dc.contributor.author Santamaria-Pérez, David es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Popescu, Catalin es_ES
dc.contributor.author Da Silva, Estelina Lora es_ES
dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Rodríguez-Carvajal, Juan es_ES
dc.contributor.author Muñoz, Alfonso es_ES
dc.contributor.author Rodríguez-Hernández, Plácida es_ES
dc.contributor.author Mujica, Andres es_ES
dc.contributor.author Radescu, Silvana Elena es_ES
dc.contributor.author Beltrán, Armando es_ES
dc.contributor.author Otero-de-la-Roza, Alberto es_ES
dc.contributor.author Nalin, Marcelo es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.contributor.author Manjón, Francisco-Javier es_ES
dc.date.accessioned 2021-02-19T04:33:53Z
dc.date.available 2021-02-19T04:33:53Z
dc.date.issued 2020-01-06 es_ES
dc.identifier.issn 0020-1669 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161854
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.9b02268. es_ES
dc.description.abstract [EN] SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak SbO electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO(4) family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq - 159754/2018-6, 307199/2018-5, 422250/20163, 201050/2012-9), FAPESP (2013/07793-6), Spanish Ministerio de Economia y Competitividad (MINECO) under projects MALTA Consolider Ingenio 2010 network (MAT2015-71070-REDC and RED2018-102612-T), MAT2016-75586-C4-1/2/3-P, PGC2018-097520-A-I00, FIS2017-83295-P, and PGC2018-094417-B-I00 from Generalitat Valenciana under project PROMETEO/2018/123, and the European Comission under project COMEX. D.S.-P., JA.S., and A.O.d.l.R. acknowledge "Ramim y Cajal" Fellowships for financial support (RyC-2014-15643, RYC-2015-17482, and RyC-2016-20301, respectively). E.L.d. S., A.M., A.B., and P.R-.H. acknowledge computing time provided by Red Espanola de SupercomputaciOn (RES) and MALTA-Cluster. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Experimental and Theoretical Study of SbPO4 under Compression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.inorgchem.9b02268 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/785789/EU/COmputational Modelling for EXtreme conditions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//201050%2F2012-9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2013%2F07793-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094417-B-I00/ES/APROXIMACIONES RACIONALES PARA EL DISEÑO DE NUEVOS MATERIALES MEDIANTE LA COMBINACION DE TEORIA Y EXPERIMENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//159754%2F2018-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//307199%2F2018-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//422250%2F20163/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097520-A-I00/ES/ESTABILIDAD ESTRUCTURAL Y REACTIVIDAD DE DIOXIDO DE CARBONO Y CARBONATOS A ALTAS PRESIONES Y ALTAS TEMPERATURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-RYC-2014-15643/ES/RYC-RYC-2014-15643/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2016-20301/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Pereira, ALDJ.; Santamaria-Pérez, D.; Vilaplana Cerda, RI.; Errandonea, D.; Popescu, C.; Da Silva, EL.; Sans-Tresserras, JÁ.... (2020). Experimental and Theoretical Study of SbPO4 under Compression. Inorganic Chemistry. 59(1):287-307. https://doi.org/10.1021/acs.inorgchem.9b02268 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.inorgchem.9b02268 es_ES
dc.description.upvformatpinicio 287 es_ES
dc.description.upvformatpfin 307 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 31876414 es_ES
dc.relation.pasarela S\403086 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Falcão Filho, E. L., Bosco, C. A. C., Maciel, G. S., de Araújo, C. B., Acioli, L. H., Nalin, M., & Messaddeq, Y. (2003). Ultrafast nonlinearity of antimony polyphosphate glasses. Applied Physics Letters, 83(7), 1292-1294. doi:10.1063/1.1601679 es_ES
dc.description.references Nalin, M., Poulain, M., Poulain, M., Ribeiro, S. J. ., & Messaddeq, Y. (2001). Antimony oxide based glasses. Journal of Non-Crystalline Solids, 284(1-3), 110-116. doi:10.1016/s0022-3093(01)00388-x es_ES
dc.description.references Nalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., … Eckert, H. (2004). Structural organization and thermal properties of the Sb2O3–SbPO4glass system. J. Mater. Chem., 14(23), 3398-3405. doi:10.1039/b406075j es_ES
dc.description.references Montesso, M., Manzani, D., Donoso, J. P., Magon, C. J., Silva, I. D. A., Chiesa, M., … Nalin, M. (2018). Synthesis and structural characterization of a new SbPO4-GeO2 glass system. Journal of Non-Crystalline Solids, 500, 133-140. doi:10.1016/j.jnoncrysol.2018.07.005 es_ES
dc.description.references Wang, Y., li, L., & Li, G. (2012). One-step synthesis of SbPO4 hollow spheres by a self-sacrificed template method. RSC Advances, 2(33), 12999. doi:10.1039/c2ra21434b es_ES
dc.description.references Chen, S., Di, Y., Li, T., Li, F., & Cao, W. (2018). Impacts of ionic liquid capping on the morphology and photocatalytic performance of SbPO4 crystals. CrystEngComm, 20(30), 4305-4312. doi:10.1039/c8ce00790j es_ES
dc.description.references Saadaoui, H., Boukhari, A., Flandrois, S., & Aride, J. (1994). Intercalation of Hydrazine and Amines in Antimony Phosphate. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 244(1), 173-178. doi:10.1080/10587259408050100 es_ES
dc.description.references Biswal, J. B., Garje, S. S., & Revaprasadu, N. (2014). A convenient synthesis of antimony sulfide and antimony phosphate nanorods using single source dithiolatoantimony(III) dialkyldithiophosphate precursors. Polyhedron, 80, 216-222. doi:10.1016/j.poly.2014.04.017 es_ES
dc.description.references Ou, M., Ling, Y., Ma, L., Liu, Z., Luo, D., & Xu, L. (2018). Synthesis and Li-storage property of flower-like SbPO4 microspheres. Materials Letters, 224, 100-104. doi:10.1016/j.matlet.2018.04.059 es_ES
dc.description.references Jones, P. G., Sheldrick, G. M., & Schwarzmann, E. (1980). Antimony(III) arsenic(V) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(8), 1923-1925. doi:10.1107/s0567740880007492 es_ES
dc.description.references Kinberger, B., Danielsen, J., Haaland, A., Jerslev, B., Schäffer, C. E., Sunde, E., & Sørensen, N. A. (1970). The Crystal Structure of SbPO4. Acta Chemica Scandinavica, 24, 320-328. doi:10.3891/acta.chem.scand.24-0320 es_ES
dc.description.references Achary, S. N., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Manjón, F. J., Krishna, P. S. R., … Tyagi, A. K. (2013). Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Transactions, 42(42), 14999. doi:10.1039/c3dt51823j es_ES
dc.description.references Alonzo, G., Bertazzi, N., Galli, P., Marci, G., Massucci, M. A., Palmisano, L., … Saiano, F. (1998). In search of layered antimony(III) materials: synthesis and characterization of oxo-antimony(III) catecholate and further studies on antimony(III) phosphate. Materials Research Bulletin, 33(8), 1233-1240. doi:10.1016/s0025-5408(98)00095-6 es_ES
dc.description.references Alonzo, G., Bertazzi, N., Galli, P., Massucci, M. A., Patrono, P., & Saiano, F. (1998). On the synthesis and characterization of layered antimony(III) phosphate and its interaction with moist ammonia and amines. Materials Research Bulletin, 33(8), 1221-1231. doi:10.1016/s0025-5408(98)00094-4 es_ES
dc.description.references Brockner, W., & Hoyer, L. P. (2002). Synthesis and vibrational spectrum of antimony phosphate, SbPO4. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58(9), 1911-1914. doi:10.1016/s1386-1425(01)00639-4 es_ES
dc.description.references Sudarsan, V., Muthe, K. ., Vyas, J. ., & Kulshreshtha, S. . (2002). PO43− tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS study. Journal of Alloys and Compounds, 336(1-2), 119-123. doi:10.1016/s0925-8388(01)01888-6 es_ES
dc.description.references Errandonea, D., Gomis, O., Santamaría-Perez, D., García-Domene, B., Muñoz, A., Rodríguez-Hernández, P., … Popescu, C. (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics, 117(10), 105902. doi:10.1063/1.4914407 es_ES
dc.description.references Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113 es_ES
dc.description.references Errandonea, D., Gomis, O., Rodríguez-Hernández, P., Muñoz, A., Ruiz-Fuertes, J., Gupta, M., … Bettinelli, M. (2018). High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4. Journal of Physics: Condensed Matter, 30(6), 065401. doi:10.1088/1361-648x/aaa20d es_ES
dc.description.references López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126 es_ES
dc.description.references Musselman, M. A., Wilkinson, T. M., Haberl, B., & Packard, C. E. (2018). In situ Raman spectroscopy of pressure‐induced phase transformations in polycrystalline Tb PO 4 , Dy PO 4 , and Gd x Dy (1− x ) PO 4. Journal of the American Ceramic Society, 101(6), 2562-2570. doi:10.1111/jace.15374 es_ES
dc.description.references Muñoz, A., & Rodríguez-Hernández, P. (2018). High-Pressure Elastic, Vibrational and Structural Study of Monazite-Type GdPO4 from Ab Initio Simulations. Crystals, 8(5), 209. doi:10.3390/cryst8050209 es_ES
dc.description.references Ghosh, P. S., Ali, K., & Arya, A. (2018). A computational study of high pressure polymorphic transformations in monazite-type LaPO4. Physical Chemistry Chemical Physics, 20(11), 7621-7634. doi:10.1039/c7cp05587k es_ES
dc.description.references Gomis, O., Lavina, B., Rodríguez-Hernández, P., Muñoz, A., Errandonea, R., Errandonea, D., & Bettinelli, M. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4and TmPO4. Journal of Physics: Condensed Matter, 29(9), 095401. doi:10.1088/1361-648x/aa516a es_ES
dc.description.references Ruiz-Fuertes, J., Hirsch, A., Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., … Milman, V. (2016). High-pressure phase of LaPO4 studied by x-ray diffraction and second harmonic generation. Physical Review B, 94(13). doi:10.1103/physrevb.94.134109 es_ES
dc.description.references Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Muñoz, A., … Hanfland, M. (2012). Effects of pressure on the structure and lattice dynamics of TmPO4: Experiments and calculations. Physical Review B, 85(2). doi:10.1103/physrevb.85.024117 es_ES
dc.description.references Errandonea, D., & Garg, A. B. (2018). Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Progress in Materials Science, 97, 123-169. doi:10.1016/j.pmatsci.2018.04.004 es_ES
dc.description.references Bandiello, E., Errandonea, D., Pellicer-Porres, J., Garg, A. B., Rodriguez-Hernandez, P., Muñoz, A., … Popescu, C. (2018). Effect of High Pressure on the Crystal Structure and Vibrational Properties of Olivine-Type LiNiPO4. Inorganic Chemistry, 57(16), 10265-10276. doi:10.1021/acs.inorgchem.8b01495 es_ES
dc.description.references Achary, S. N., Bevara, S., & Tyagi, A. K. (2017). Recent progress on synthesis and structural aspects of rare-earth phosphates. Coordination Chemistry Reviews, 340, 266-297. doi:10.1016/j.ccr.2017.03.006 es_ES
dc.description.references Bykov, M., Bykova, E., Hanfland, M., Liermann, H.-P., Kremer, R. K., Glaum, R., … van Smaalen, S. (2016). High-Pressure Phase Transformations in TiPO4: A Route to Pentacoordinated Phosphorus. Angewandte Chemie International Edition, 55(48), 15053-15057. doi:10.1002/anie.201608530 es_ES
dc.description.references López-Moreno, S., & Errandonea, D. (2012). Ab initioprediction of pressure-induced structural phase transitions of CrVO4-type orthophosphates. Physical Review B, 86(10). doi:10.1103/physrevb.86.104112 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references Merrill, L., & Bassett, W. A. (1974). Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies. Review of Scientific Instruments, 45(2), 290-294. doi:10.1063/1.1686607 es_ES
dc.description.references Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112 es_ES
dc.description.references Prescher, C., & Prakapenka, V. B. (2015). DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223-230. doi:10.1080/08957959.2015.1059835 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 es_ES
dc.description.references Parlinski, K. Computer Code PHONON; http://wolf.ifj.edu.pl/phonon. es_ES
dc.description.references Nielsen, O. H., & Martin, R. M. (1985). Quantum-mechanical theory of stress and force. Physical Review B, 32(6), 3780-3791. doi:10.1103/physrevb.32.3780 es_ES
dc.description.references Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104 es_ES
dc.description.references Otero-de-la-Roza, A., Johnson, E. R., & Luaña, V. (2014). Critic2: A program for real-space analysis of quantum chemical interactions in solids. Computer Physics Communications, 185(3), 1007-1018. doi:10.1016/j.cpc.2013.10.026 es_ES
dc.description.references Dewhurst, K.; Sharma, S.; Nordström, L.; Cricchio, F.; Grånäs, O.; Gross, H.; Ambrosch-Draxl, C.; Persson, C.; Bultmark, F.; Brouder, C., The Elk FP-LAPW code; http://elk.sourceforge.net/ (accessed Oct 31, 2019). es_ES
dc.description.references Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672 es_ES
dc.description.references Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402 es_ES
dc.description.references Pereira, A. L. J., Gomis, O., Sans, J. A., Pellicer-Porres, J., Manjón, F. J., Beltran, A., … Muñoz, A. (2014). Pressure effects on the vibrational properties ofα-Bi2O3: an experimental and theoretical study. Journal of Physics: Condensed Matter, 26(22), 225401. doi:10.1088/0953-8984/26/22/225401 es_ES
dc.description.references Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j es_ES
dc.description.references Ibáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276 es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411 es_ES
dc.description.references Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110 es_ES
dc.description.references Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194 es_ES
dc.description.references Bai, Y., Srikanth, N., Chua, C. K., & Zhou, K. (2017). Density Functional Theory Study of Mn+1AXn Phases: A Review. Critical Reviews in Solid State and Materials Sciences, 44(1), 56-107. doi:10.1080/10408436.2017.1370577 es_ES
dc.description.references An ab initio study on compressibility of Al-containing MAX-phase carbides. (2013). Journal of Applied Physics, 114(17), 173709. doi:10.1063/1.4829282 es_ES
dc.description.references Bai, Y., Qi, X., He, X., Sun, D., Kong, F., Zheng, Y., … Duff, A. I. (2018). Phase stability and weak metallic bonding within ternary‐layered borides CrAlB, Cr 2 AlB 2 , Cr 3 AlB 4 , and Cr 4 AlB 6. Journal of the American Ceramic Society, 102(6), 3715-3727. doi:10.1111/jace.16206 es_ES
dc.description.references Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257 es_ES
dc.description.references Pereira, A. L. J., Gomis, O., Sans, J. A., Contreras-García, J., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2016). β−Bi2O3under compression: Optical and elastic properties and electron density topology analysis. Physical Review B, 93(22). doi:10.1103/physrevb.93.224111 es_ES
dc.description.references Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049 es_ES
dc.description.references Korabel’nikov, D. V., & Zhuravlev, Y. N. (2018). Structural, elastic, electronic and vibrational properties of a series of sulfates from first principles calculations. Journal of Physics and Chemistry of Solids, 119, 114-121. doi:10.1016/j.jpcs.2018.03.037 es_ES
dc.description.references Santamaría-Pérez, D., Gracia, L., Garbarino, G., Beltrán, A., Chuliá-Jordán, R., Gomis, O., … Segura, A. (2011). High-pressure study of the behavior of mineral barite by x-ray diffraction. Physical Review B, 84(5). doi:10.1103/physrevb.84.054102 es_ES
dc.description.references Santamaria-Perez, D., Chulia-Jordan, R., Daisenberger, D., Rodriguez-Hernandez, P., & Muñoz, A. (2019). Dense Post-Barite-type Polymorph of PbSO4 Anglesite at High Pressures. Inorganic Chemistry, 58(4), 2708-2716. doi:10.1021/acs.inorgchem.8b03254 es_ES
dc.description.references Hinrichsen, B., Dinnebier, R. E., Liu, H., & Jansen, M. (2008). The high pressure crystal structures of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data. Zeitschrift für Kristallographie - Crystalline Materials, 223(3), 195-203. doi:10.1524/zkri.2008.0017 es_ES
dc.description.references Knight, K. S. (2010). Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite. Physics and Chemistry of Minerals, 37(8), 529-533. doi:10.1007/s00269-009-0353-8 es_ES
dc.description.references Angel, R. J. Win_Strain; http://www.rossangel.com/text_strain.htm. es_ES
dc.description.references Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Gomis, O., Achary, S. N., Popescu, C., … Tyagi, A. K. (2016). High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55(10), 4958-4969. doi:10.1021/acs.inorgchem.6b00503 es_ES
dc.description.references Bodenstein, D., Brehm, A., Jones, P. G., Schwarzmann, E., & Sheldrick, G. M. (1982). Darstellung und Kristallstruktur von Arsen(III)phosplior(V)oxid, AsPO4 / Preparation and Crystal Structure of Arsenic(III) Phosphorus(V) Oxide, AsPO4. Zeitschrift für Naturforschung B, 37(2), 136-137. doi:10.1515/znb-1982-0203 es_ES
dc.description.references Ruiz-Fuertes, J., Friedrich, A., Gomis, O., Errandonea, D., Morgenroth, W., Sans, J. A., & Santamaría-Pérez, D. (2015). High-pressure structural phase transition inMnWO4. Physical Review B, 91(10). doi:10.1103/physrevb.91.104109 es_ES
dc.description.references Garg, A. B., Errandonea, D., Rodríguez-Hernández, P., & Muñoz, A. (2016). ScVO4under non-hydrostatic compression: a new metastable polymorph. Journal of Physics: Condensed Matter, 29(5), 055401. doi:10.1088/1361-648x/29/5/055401 es_ES
dc.description.references Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970 es_ES
dc.description.references Hoppe, R. (1970). The Coordination Number– an«Inorganic Chameleon». Angewandte Chemie International Edition in English, 9(1), 25-34. doi:10.1002/anie.197000251 es_ES
dc.description.references Hoppe, R. (1979). Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie - Crystalline Materials, 150(1-4), 23-52. doi:10.1524/zkri.1979.150.14.23 es_ES
dc.description.references Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560 es_ES
dc.description.references Guńka, P. A., & Zachara, J. (2019). Towards a quantitative bond valence description of coordination spheres – the concepts of valence entropy and valence diversity coordination numbers. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 75(1), 86-96. doi:10.1107/s2052520618017833 es_ES
dc.description.references Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). Anomalous High-Pressure Jahn-Teller Behavior inCuWO4. Physical Review Letters, 108(16). doi:10.1103/physrevlett.108.166402 es_ES
dc.description.references Pellicer-Porres, J., Saitta, A. M., Polian, A., Itié, J. P., & Hanfland, M. (2007). Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. Nature Materials, 6(9), 698-702. doi:10.1038/nmat1966 es_ES
dc.description.references Angot, E., Huang, B., Levelut, C., Le Parc, R., Hermet, P., Pereira, A. S., … Haines, J. (2017). Experimental and first-principles calculation study of the pressure-induced transitions to a metastable phase inGaPO4and in the solid solutionAlPO4−GaPO4. Physical Review Materials, 1(3). doi:10.1103/physrevmaterials.1.033607 es_ES
dc.description.references Stavrou, E., Tatsi, A., Salpea, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of zircon-structured RPO4(R = Y, Tb, Er, Tm) phosphates at high pressures. Journal of Physics: Conference Series, 121(4), 042016. doi:10.1088/1742-6596/121/4/042016 es_ES
dc.description.references Tatsi, A., Stavrou, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of tetragonal TbPO4and observation of a first-order phase transition at high pressure. Journal of Physics: Condensed Matter, 20(42), 425216. doi:10.1088/0953-8984/20/42/425216 es_ES
dc.description.references Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114 es_ES
dc.description.references Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem