- -

A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Luis-Fernández, Beatriz es_ES
dc.contributor.author García-Fernández, Alba es_ES
dc.contributor.author Llopis-Lorente, Antoni es_ES
dc.contributor.author Villalonga, Reynaldo es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-02-19T04:34:02Z
dc.date.available 2021-02-19T04:34:02Z
dc.date.issued 2020-09-07 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161857
dc.description.abstract [EN] A biocomputing strategy implemented in hybrid nanocarriers for controlled cargo delivery is described. The nanodevice consists of enzyme-functionalized Janus Au-mesoporous silica nanoparticles, which behave as an electronic demultiplexer (DEMUX). The nanocarrier is capable of reading molecular information from the environment (lactose) and selecting one of two possible outputs (galactose production or 4-methylumbellilferone release and activation) depending on the presence of an addressing input NAD(+). es_ES
dc.description.sponsorship The authors wish to thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE), CTQ2017-87954-P), the Generalitat Valenciana (PROMETEO 2018/024), the Comunidad de Madrid (IND2017/BMD-7642) and CIBER-BBN (NANOCOMMUNITY project) for support. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0cc03803b es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//IND2017%2FBMD-7642/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87954-P/ES/NANOMAQUINAS INTELIGENTES BASADAS EN NANOMATERIALES JANUS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation De Luis-Fernández, B.; García-Fernández, A.; Llopis-Lorente, A.; Villalonga, R.; Sancenón Galarza, F.; Martínez-Máñez, R. (2020). A 1-to-2 demultiplexer hybrid nanocarrier for cargo delivery and activation. Chemical Communications. 56(69):9974-9977. https://doi.org/10.1039/d0cc03803b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0cc03803b es_ES
dc.description.upvformatpinicio 9974 es_ES
dc.description.upvformatpfin 9977 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 69 es_ES
dc.relation.pasarela S\418488 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Soto, F., & Chrostowski, R. (2018). Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Frontiers in Bioengineering and Biotechnology, 6. doi:10.3389/fbioe.2018.00170 es_ES
dc.description.references Zhang, X., Chen, L., Lim, K. H., Gonuguntla, S., Lim, K. W., Pranantyo, D., … Soh, S. (2019). The Pathway to Intelligence: Using Stimuli‐Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 31(11), 1804540. doi:10.1002/adma.201804540 es_ES
dc.description.references Mailloux, S., & Katz, E. (2014). Biocomputing, Biosensing and Bioactuation Based on Enzyme Biocatalyzed Reactions. Biocatalysis, 1(1). doi:10.2478/boca-2014-0002 es_ES
dc.description.references Katz, E. (2018). Boolean Logic Gates Realized with Enzyme‐catalyzed Reactions – Unusual Look at Usual Chemical Reactions. ChemPhysChem, 20(1), 9-22. doi:10.1002/cphc.201800900 es_ES
dc.description.references Erbas-Cakmak, S., Kolemen, S., Sedgwick, A. C., Gunnlaugsson, T., James, T. D., Yoon, J., & Akkaya, E. U. (2018). Molecular logic gates: the past, present and future. Chemical Society Reviews, 47(7), 2228-2248. doi:10.1039/c7cs00491e es_ES
dc.description.references Su, H., Xu, J., Wang, Q., Wang, F., & Zhou, X. (2019). High-efficiency and integrable DNA arithmetic and logic system based on strand displacement synthesis. Nature Communications, 10(1). doi:10.1038/s41467-019-13310-2 es_ES
dc.description.references Orbach, R., Willner, B., & Willner, I. (2015). Catalytic nucleic acids (DNAzymes) as functional units for logic gates and computing circuits: from basic principles to practical applications. Chemical Communications, 51(20), 4144-4160. doi:10.1039/c4cc09874a es_ES
dc.description.references Arugula, M. A., Bocharova, V., Halámek, J., Pita, M., & Katz, E. (2010). Enzyme-Based Multiplexer and Demultiplexer. The Journal of Physical Chemistry B, 114(15), 5222-5226. doi:10.1021/jp101101b es_ES
dc.description.references Andréasson, J., Straight, S. D., Bandyopadhyay, S., Mitchell, R. H., Moore, T. A., Moore, A. L., & Gust, D. (2007). A Molecule-Based 1:2 Digital Demultiplexer. The Journal of Physical Chemistry C, 111(38), 14274-14278. doi:10.1021/jp074429p es_ES
dc.description.references Turan, I. S., Gunaydin, G., Ayan, S., & Akkaya, E. U. (2018). Molecular demultiplexer as a terminator automaton. Nature Communications, 9(1). doi:10.1038/s41467-018-03259-z es_ES
dc.description.references Orbach, R., Remacle, F., Levine, R. D., & Willner, I. (2014). DNAzyme-based 2:1 and 4:1 multiplexers and 1:2 demultiplexer. Chemical Science, 5(3), 1074. doi:10.1039/c3sc52752b es_ES
dc.description.references Luo, C., Sun, J., Sun, B., & He, Z. (2014). Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends in Pharmacological Sciences, 35(11), 556-566. doi:10.1016/j.tips.2014.09.008 es_ES
dc.description.references Moreira, J., Hamraz, M., Abolhassani, M., Bigan, E., Pérès, S., Paulevé, L., … Schwartz, L. (2016). The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect. Metabolites, 6(4), 33. doi:10.3390/metabo6040033 es_ES
dc.description.references Adekola, K., Rosen, S. T., & Shanmugam, M. (2012). Glucose transporters in cancer metabolism. Current Opinion in Oncology, 24(6), 650-654. doi:10.1097/cco.0b013e328356da72 es_ES
dc.description.references Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482 es_ES
dc.description.references Guo, Z. (2017). The modification of natural products for medical use. Acta Pharmaceutica Sinica B, 7(2), 119-136. doi:10.1016/j.apsb.2016.06.003 es_ES
dc.description.references Llopis-Lorente, A., de Luis, B., García-Fernández, A., Jimenez-Falcao, S., Orzáez, M., Sancenón, F., … Martínez-Máñez, R. (2018). Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 10(31), 26494-26500. doi:10.1021/acsami.8b05920 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Tregubov, A. A., Nikitin, P. I., & Nikitin, M. P. (2018). Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 118(20), 10294-10348. doi:10.1021/acs.chemrev.8b00198 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem