- -

Enhancing sustainability and resilience through multi-level infrastructure planning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing sustainability and resilience through multi-level infrastructure planning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salas, Jorge es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-19T04:34:13Z
dc.date.available 2021-02-19T04:34:13Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161862
dc.description.abstract [EN] Resilient planning demands not only resilient actions, but also resilient implementation, which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure planning for the promotion of adaptive capacity, and of top-down approaches for the achievement of global objectives and the reduction of structural vulnerabilities and imbalances. Though several authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical control for better plan implementation, very few methods have yet been developed with this aim, least of all with a multi-objective perspective. This work addressed this lack by including, for the first time, the mitigation of urban vulnerability, the improvement of road network condition, and the minimization of the economic cost as objectives in a resilient planning process in which both actions and their implementation are planned for a controlled, sustainable development. Building on Urban planning support system (UPSS), a previously developed planning tool, the improved planning support system affords a planning alternative over the Spanish road network, with the best multi-objective balance between optimization, risk, and opportunity. The planning process then formalizes local adaptive capacity as the capacity to vary the selected planning alternative within certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by means of multi-objective optimization, the method reveals the multi-objective trade-offs between local opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for better informed decision-making. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER, grant number Project: BIA2017-85098-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multi-scale assessment es_ES
dc.subject Hierarchical relational modeling es_ES
dc.subject Cascading impacts es_ES
dc.subject Adaptive capacity es_ES
dc.subject Infrastructure integrated planning es_ES
dc.subject Road network es_ES
dc.subject Decentralization optimization es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Enhancing sustainability and resilience through multi-level infrastructure planning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17030962 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Salas, J.; Yepes, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental research and Public Health. 17(3):1-22. https://doi.org/10.3390/ijerph17030962 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17030962 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32033230 es_ES
dc.identifier.pmcid PMC7038161 es_ES
dc.relation.pasarela S\402085 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Holling, C. S. (2004). From Complex Regions to Complex Worlds. Ecology and Society, 9(1). doi:10.5751/es-00612-090111 es_ES
dc.description.references Sharifi, A., & Yamagata, Y. (2014). Resilient Urban Planning: Major Principles and Criteria. Energy Procedia, 61, 1491-1495. doi:10.1016/j.egypro.2014.12.154 es_ES
dc.description.references Chen, Z., & Qiu, B. (2015). Resilient Planning Frame for Building Resilient Cities. GeoJournal Library, 33-41. doi:10.1007/978-3-319-14145-9_4 es_ES
dc.description.references Salas, J., & Yepes, V. (2019). MS-ReRO and D-ROSE methods: Assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216, 607-623. doi:10.1016/j.jclepro.2018.12.083 es_ES
dc.description.references Schulz, A., Zia, A., & Koliba, C. (2015). Adapting bridge infrastructure to climate change: institutionalizing resilience in intergovernmental transportation planning processes in the Northeastern USA. Mitigation and Adaptation Strategies for Global Change, 22(1), 175-198. doi:10.1007/s11027-015-9672-x es_ES
dc.description.references Sharifi, A., & Yamagata, Y. (2018). Resilience-Oriented Urban Planning. Lecture Notes in Energy, 3-27. doi:10.1007/978-3-319-75798-8_1 es_ES
dc.description.references Gonzales, P., & Ajami, N. K. (2017). An integrative regional resilience framework for the changing urban water paradigm. Sustainable Cities and Society, 30, 128-138. doi:10.1016/j.scs.2017.01.012 es_ES
dc.description.references Leigh, N., & Lee, H. (2019). Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning. Sustainability, 11(3), 918. doi:10.3390/su11030918 es_ES
dc.description.references Rogers, C. D. (2018). Engineering future liveable, resilient, sustainable cities using foresight. Proceedings of the Institution of Civil Engineers - Civil Engineering, 171(6), 3-9. doi:10.1680/jcien.17.00031 es_ES
dc.description.references Wagenaar, H., & Wilkinson, C. (2013). Enacting Resilience: A Performative Account of Governing for Urban Resilience. Urban Studies, 52(7), 1265-1284. doi:10.1177/0042098013505655 es_ES
dc.description.references Wei, Y. D., Li, H., & Yue, W. (2017). Urban land expansion and regional inequality in transitional China. Landscape and Urban Planning, 163, 17-31. doi:10.1016/j.landurbplan.2017.02.019 es_ES
dc.description.references France-Mensah, J., & O’Brien, W. J. (2019). Developing a Sustainable Pavement Management Plan: Tradeoffs in Road Condition, User Costs, and Greenhouse Gas Emissions. Journal of Management in Engineering, 35(3), 04019005. doi:10.1061/(asce)me.1943-5479.0000686 es_ES
dc.description.references Mao, X., Wang, J., Yuan, C., Yu, W., & Gan, J. (2018). A Dynamic Traffic Assignment Model for the Sustainability of Pavement Performance. Sustainability, 11(1), 170. doi:10.3390/su11010170 es_ES
dc.description.references Torres-Machi, C., Pellicer, E., Yepes, V., & Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148, 90-102. doi:10.1016/j.jclepro.2017.01.100 es_ES
dc.description.references Torres-Machi, C., Osorio, A., Godoy, P., Chamorro, A., Mourgues, C., & Videla, C. (2018). Sustainable Management Framework for Transportation Assets: Application to Urban Pavement Networks. KSCE Journal of Civil Engineering, 22(10), 4095-4106. doi:10.1007/s12205-018-1314-x es_ES
dc.description.references Ouma, Y. O., Opudo, J., & Nyambenya, S. (2015). Comparison of Fuzzy AHP and Fuzzy TOPSIS for Road Pavement Maintenance Prioritization: Methodological Exposition and Case Study. Advances in Civil Engineering, 2015, 1-17. doi:10.1155/2015/140189 es_ES
dc.description.references Viera Gomes, S., Cardoso, J. L., & Azevedo, C. L. (2018). Portuguese mainland road network safety performance indicator. Case Studies on Transport Policy, 6(3), 416-422. doi:10.1016/j.cstp.2017.10.006 es_ES
dc.description.references Heinitz, F. M. (2018). Consistency of state road network master plan development steps. Case Studies on Transport Policy, 6(3), 400-415. doi:10.1016/j.cstp.2017.08.001 es_ES
dc.description.references Rezaei, A., & Tahsili, S. (2018). Urban Vulnerability Assessment Using AHP. Advances in Civil Engineering, 2018, 1-20. doi:10.1155/2018/2018601 es_ES
dc.description.references Masi, A., Santarsiero, G., & Chiauzzi, L. (2014). Development of a seismic risk mitigation methodology for public buildings applied to the hospitals of Basilicata region (Southern Italy). Soil Dynamics and Earthquake Engineering, 65, 30-42. doi:10.1016/j.soildyn.2014.05.011 es_ES
dc.description.references Beilin, R., & Wilkinson, C. (2015). Introduction: Governing for urban resilience. Urban Studies, 52(7), 1205-1217. doi:10.1177/0042098015574955 es_ES
dc.description.references Cedergren, A., Johansson, J., & Hassel, H. (2018). Challenges to critical infrastructure resilience in an institutionally fragmented setting. Safety Science, 110, 51-58. doi:10.1016/j.ssci.2017.12.025 es_ES
dc.description.references Regmi, B. R., Star, C., & Leal Filho, W. (2014). Effectiveness of the Local Adaptation Plan of Action to support climate change adaptation in Nepal. Mitigation and Adaptation Strategies for Global Change, 21(3), 461-478. doi:10.1007/s11027-014-9610-3 es_ES
dc.description.references Frank, J., & Martinez-Vazquez, J. (Eds.). (2015). Decentralization and Infrastructure in the Global Economy. doi:10.4324/9781315694108 es_ES
dc.description.references Lehmann, P., Brenck, M., Gebhardt, O., Schaller, S., & Süßbauer, E. (2013). Barriers and opportunities for urban adaptation planning: analytical framework and evidence from cities in Latin America and Germany. Mitigation and Adaptation Strategies for Global Change, 20(1), 75-97. doi:10.1007/s11027-013-9480-0 es_ES
dc.description.references Jain, M., & Korzhenevych, A. (2017). Spatial Disparities, Transport Infrastructure, and Decentralization Policy in the Delhi Region. Journal of Urban Planning and Development, 143(3), 05017003. doi:10.1061/(asce)up.1943-5444.0000379 es_ES
dc.description.references De Gregorio Hurtado, S. (2017). Is EU urban policy transforming urban regeneration in Spain? Answers from an analysis of the Iniciativa Urbana (2007–2013). Cities, 60, 402-414. doi:10.1016/j.cities.2016.10.015 es_ES
dc.description.references Newman, J. P., Dandy, G. C., & Maier, H. R. (2014). Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization. Water Resources Research, 50(10), 7915-7938. doi:10.1002/2013wr015233 es_ES
dc.description.references Gänzle, S., Stead, D., Sielker, F., & Chilla, T. (2018). Macro-regional Strategies, Cohesion Policy and Regional Cooperation in the European Union: Towards a Research Agenda. Political Studies Review, 17(2), 161-174. doi:10.1177/1478929918781982 es_ES
dc.description.references Roozbahani, A., Zahraie, B., & Tabesh, M. (2012). Integrated risk assessment of urban water supply systems from source to tap. Stochastic Environmental Research and Risk Assessment, 27(4), 923-944. doi:10.1007/s00477-012-0614-9 es_ES
dc.description.references Gupta, J., Bergsma, E., Termeer, C. J. A. M., Biesbroek, G. R., van den Brink, M., Jong, P., … Nooteboom, S. (2015). The adaptive capacity of institutions in the spatial planning, water, agriculture and nature sectors in the Netherlands. Mitigation and Adaptation Strategies for Global Change, 21(6), 883-903. doi:10.1007/s11027-014-9630-z es_ES
dc.description.references Rigillo, M., & Cervelli, E. (2014). Mapping Urban Vulnerability: The Case Study of Gran Santo Domingo, Dominican Republic. Advanced Engineering Forum, 11, 142-148. doi:10.4028/www.scientific.net/aef.11.142 es_ES
dc.description.references Salas, J., & Yepes, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179, 544-558. doi:10.1016/j.jclepro.2018.01.088 es_ES
dc.description.references Salas, J., & Yepes, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176, 1231-1244. doi:10.1016/j.jclepro.2017.11.249 es_ES
dc.description.references Zhao, P., Chapman, R., Randal, E., & Howden-Chapman, P. (2013). Understanding Resilient Urban Futures: A Systemic Modelling Approach. Sustainability, 5(7), 3202-3223. doi:10.3390/su5073202 es_ES
dc.description.references Salas, J., & Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8), 2191. doi:10.3390/su11082191 es_ES
dc.description.references Saku Kukkonen, & Jouni Lampinen. (2007). Ranking-Dominance and Many-Objective Optimization. 2007 IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2007.4424990 es_ES
dc.description.references Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 es_ES
dc.description.references Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281. doi:10.1016/j.gloenvcha.2006.02.006 es_ES
dc.description.references Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380-1393. doi:10.1016/j.jclepro.2017.07.027 es_ES
dc.description.references Zhang, Chen, Cai, Gao, Zhang, Liu, … Li. (2019). Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. International Journal of Environmental Research and Public Health, 16(22), 4442. doi:10.3390/ijerph16224442 es_ES
dc.description.references Baudrit, C., Taillandier, F., Tran, T. T. P., & Breysse, D. (2018). Uncertainty Processing and Risk Monitoring in Construction Projects Using Hierarchical Probabilistic Relational Models. Computer-Aided Civil and Infrastructure Engineering, 34(2), 97-115. doi:10.1111/mice.12391 es_ES
dc.description.references Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. doi:10.1016/0377-2217(90)90057-i es_ES
dc.description.references Singh, R. P., & Nachtnebel, H. P. (2016). Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal. Renewable and Sustainable Energy Reviews, 55, 43-58. doi:10.1016/j.rser.2015.10.138 es_ES
dc.description.references Convertino, M., Muñoz-Carpena, R., Chu-Agor, M. L., Kiker, G. A., & Linkov, I. (2014). Untangling drivers of species distributions: Global sensitivity and uncertainty analyses of MaxEnt. Environmental Modelling & Software, 51, 296-309. doi:10.1016/j.envsoft.2013.10.001 es_ES
dc.description.references Groen, E. A., Bokkers, E. A. M., Heijungs, R., & de Boer, I. J. M. (2016). Methods for global sensitivity analysis in life cycle assessment. The International Journal of Life Cycle Assessment, 22(7), 1125-1137. doi:10.1007/s11367-016-1217-3 es_ES
dc.description.references Evelyne Groen, Global Sensitivity Analysishttps://evelynegroen.github.io/Code/globalsensitivity.html es_ES
dc.description.references Convertino, M., & Valverde, L. J. (2013). Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management. PLoS ONE, 8(6), e65056. doi:10.1371/journal.pone.0065056 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references McGlashan, A., Verrinder, G., & Verhagen, E. (2018). Working towards More Effective Implementation, Dissemination and Scale-Up of Lower-Limb Injury-Prevention Programs: Insights from Community Australian Football Coaches. International Journal of Environmental Research and Public Health, 15(2), 351. doi:10.3390/ijerph15020351 es_ES
dc.description.references YEPES, V., TORRES-MACHI, C., CHAMORRO, A., & PELLICER, E. (2016). OPTIMAL PAVEMENT MAINTENANCE PROGRAMS BASED ON A HYBRID GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE ALGORITHM. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 22(4), 540-550. doi:10.3846/13923730.2015.1120770 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 es_ES
dc.description.references Sierra, L. A., Pellicer, E., & Yepes, V. (2016). Social Sustainability in the Lifecycle of Chilean Public Infrastructure. Journal of Construction Engineering and Management, 142(5), 05015020. doi:10.1061/(asce)co.1943-7862.0001099 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem