Mostrar el registro sencillo del ítem
dc.contributor.author | Salas, Jorge | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2021-02-19T04:34:13Z | |
dc.date.available | 2021-02-19T04:34:13Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161862 | |
dc.description.abstract | [EN] Resilient planning demands not only resilient actions, but also resilient implementation, which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure planning for the promotion of adaptive capacity, and of top-down approaches for the achievement of global objectives and the reduction of structural vulnerabilities and imbalances. Though several authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical control for better plan implementation, very few methods have yet been developed with this aim, least of all with a multi-objective perspective. This work addressed this lack by including, for the first time, the mitigation of urban vulnerability, the improvement of road network condition, and the minimization of the economic cost as objectives in a resilient planning process in which both actions and their implementation are planned for a controlled, sustainable development. Building on Urban planning support system (UPSS), a previously developed planning tool, the improved planning support system affords a planning alternative over the Spanish road network, with the best multi-objective balance between optimization, risk, and opportunity. The planning process then formalizes local adaptive capacity as the capacity to vary the selected planning alternative within certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by means of multi-objective optimization, the method reveals the multi-objective trade-offs between local opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for better informed decision-making. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER, grant number Project: BIA2017-85098-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Multi-scale assessment | es_ES |
dc.subject | Hierarchical relational modeling | es_ES |
dc.subject | Cascading impacts | es_ES |
dc.subject | Adaptive capacity | es_ES |
dc.subject | Infrastructure integrated planning | es_ES |
dc.subject | Road network | es_ES |
dc.subject | Decentralization optimization | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Enhancing sustainability and resilience through multi-level infrastructure planning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17030962 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Salas, J.; Yepes, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental research and Public Health. 17(3):1-22. https://doi.org/10.3390/ijerph17030962 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17030962 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 32033230 | es_ES |
dc.identifier.pmcid | PMC7038161 | es_ES |
dc.relation.pasarela | S\402085 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Holling, C. S. (2004). From Complex Regions to Complex Worlds. Ecology and Society, 9(1). doi:10.5751/es-00612-090111 | es_ES |
dc.description.references | Sharifi, A., & Yamagata, Y. (2014). Resilient Urban Planning: Major Principles and Criteria. Energy Procedia, 61, 1491-1495. doi:10.1016/j.egypro.2014.12.154 | es_ES |
dc.description.references | Chen, Z., & Qiu, B. (2015). Resilient Planning Frame for Building Resilient Cities. GeoJournal Library, 33-41. doi:10.1007/978-3-319-14145-9_4 | es_ES |
dc.description.references | Salas, J., & Yepes, V. (2019). MS-ReRO and D-ROSE methods: Assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216, 607-623. doi:10.1016/j.jclepro.2018.12.083 | es_ES |
dc.description.references | Schulz, A., Zia, A., & Koliba, C. (2015). Adapting bridge infrastructure to climate change: institutionalizing resilience in intergovernmental transportation planning processes in the Northeastern USA. Mitigation and Adaptation Strategies for Global Change, 22(1), 175-198. doi:10.1007/s11027-015-9672-x | es_ES |
dc.description.references | Sharifi, A., & Yamagata, Y. (2018). Resilience-Oriented Urban Planning. Lecture Notes in Energy, 3-27. doi:10.1007/978-3-319-75798-8_1 | es_ES |
dc.description.references | Gonzales, P., & Ajami, N. K. (2017). An integrative regional resilience framework for the changing urban water paradigm. Sustainable Cities and Society, 30, 128-138. doi:10.1016/j.scs.2017.01.012 | es_ES |
dc.description.references | Leigh, N., & Lee, H. (2019). Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning. Sustainability, 11(3), 918. doi:10.3390/su11030918 | es_ES |
dc.description.references | Rogers, C. D. (2018). Engineering future liveable, resilient, sustainable cities using foresight. Proceedings of the Institution of Civil Engineers - Civil Engineering, 171(6), 3-9. doi:10.1680/jcien.17.00031 | es_ES |
dc.description.references | Wagenaar, H., & Wilkinson, C. (2013). Enacting Resilience: A Performative Account of Governing for Urban Resilience. Urban Studies, 52(7), 1265-1284. doi:10.1177/0042098013505655 | es_ES |
dc.description.references | Wei, Y. D., Li, H., & Yue, W. (2017). Urban land expansion and regional inequality in transitional China. Landscape and Urban Planning, 163, 17-31. doi:10.1016/j.landurbplan.2017.02.019 | es_ES |
dc.description.references | France-Mensah, J., & O’Brien, W. J. (2019). Developing a Sustainable Pavement Management Plan: Tradeoffs in Road Condition, User Costs, and Greenhouse Gas Emissions. Journal of Management in Engineering, 35(3), 04019005. doi:10.1061/(asce)me.1943-5479.0000686 | es_ES |
dc.description.references | Mao, X., Wang, J., Yuan, C., Yu, W., & Gan, J. (2018). A Dynamic Traffic Assignment Model for the Sustainability of Pavement Performance. Sustainability, 11(1), 170. doi:10.3390/su11010170 | es_ES |
dc.description.references | Torres-Machi, C., Pellicer, E., Yepes, V., & Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148, 90-102. doi:10.1016/j.jclepro.2017.01.100 | es_ES |
dc.description.references | Torres-Machi, C., Osorio, A., Godoy, P., Chamorro, A., Mourgues, C., & Videla, C. (2018). Sustainable Management Framework for Transportation Assets: Application to Urban Pavement Networks. KSCE Journal of Civil Engineering, 22(10), 4095-4106. doi:10.1007/s12205-018-1314-x | es_ES |
dc.description.references | Ouma, Y. O., Opudo, J., & Nyambenya, S. (2015). Comparison of Fuzzy AHP and Fuzzy TOPSIS for Road Pavement Maintenance Prioritization: Methodological Exposition and Case Study. Advances in Civil Engineering, 2015, 1-17. doi:10.1155/2015/140189 | es_ES |
dc.description.references | Viera Gomes, S., Cardoso, J. L., & Azevedo, C. L. (2018). Portuguese mainland road network safety performance indicator. Case Studies on Transport Policy, 6(3), 416-422. doi:10.1016/j.cstp.2017.10.006 | es_ES |
dc.description.references | Heinitz, F. M. (2018). Consistency of state road network master plan development steps. Case Studies on Transport Policy, 6(3), 400-415. doi:10.1016/j.cstp.2017.08.001 | es_ES |
dc.description.references | Rezaei, A., & Tahsili, S. (2018). Urban Vulnerability Assessment Using AHP. Advances in Civil Engineering, 2018, 1-20. doi:10.1155/2018/2018601 | es_ES |
dc.description.references | Masi, A., Santarsiero, G., & Chiauzzi, L. (2014). Development of a seismic risk mitigation methodology for public buildings applied to the hospitals of Basilicata region (Southern Italy). Soil Dynamics and Earthquake Engineering, 65, 30-42. doi:10.1016/j.soildyn.2014.05.011 | es_ES |
dc.description.references | Beilin, R., & Wilkinson, C. (2015). Introduction: Governing for urban resilience. Urban Studies, 52(7), 1205-1217. doi:10.1177/0042098015574955 | es_ES |
dc.description.references | Cedergren, A., Johansson, J., & Hassel, H. (2018). Challenges to critical infrastructure resilience in an institutionally fragmented setting. Safety Science, 110, 51-58. doi:10.1016/j.ssci.2017.12.025 | es_ES |
dc.description.references | Regmi, B. R., Star, C., & Leal Filho, W. (2014). Effectiveness of the Local Adaptation Plan of Action to support climate change adaptation in Nepal. Mitigation and Adaptation Strategies for Global Change, 21(3), 461-478. doi:10.1007/s11027-014-9610-3 | es_ES |
dc.description.references | Frank, J., & Martinez-Vazquez, J. (Eds.). (2015). Decentralization and Infrastructure in the Global Economy. doi:10.4324/9781315694108 | es_ES |
dc.description.references | Lehmann, P., Brenck, M., Gebhardt, O., Schaller, S., & Süßbauer, E. (2013). Barriers and opportunities for urban adaptation planning: analytical framework and evidence from cities in Latin America and Germany. Mitigation and Adaptation Strategies for Global Change, 20(1), 75-97. doi:10.1007/s11027-013-9480-0 | es_ES |
dc.description.references | Jain, M., & Korzhenevych, A. (2017). Spatial Disparities, Transport Infrastructure, and Decentralization Policy in the Delhi Region. Journal of Urban Planning and Development, 143(3), 05017003. doi:10.1061/(asce)up.1943-5444.0000379 | es_ES |
dc.description.references | De Gregorio Hurtado, S. (2017). Is EU urban policy transforming urban regeneration in Spain? Answers from an analysis of the Iniciativa Urbana (2007–2013). Cities, 60, 402-414. doi:10.1016/j.cities.2016.10.015 | es_ES |
dc.description.references | Newman, J. P., Dandy, G. C., & Maier, H. R. (2014). Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization. Water Resources Research, 50(10), 7915-7938. doi:10.1002/2013wr015233 | es_ES |
dc.description.references | Gänzle, S., Stead, D., Sielker, F., & Chilla, T. (2018). Macro-regional Strategies, Cohesion Policy and Regional Cooperation in the European Union: Towards a Research Agenda. Political Studies Review, 17(2), 161-174. doi:10.1177/1478929918781982 | es_ES |
dc.description.references | Roozbahani, A., Zahraie, B., & Tabesh, M. (2012). Integrated risk assessment of urban water supply systems from source to tap. Stochastic Environmental Research and Risk Assessment, 27(4), 923-944. doi:10.1007/s00477-012-0614-9 | es_ES |
dc.description.references | Gupta, J., Bergsma, E., Termeer, C. J. A. M., Biesbroek, G. R., van den Brink, M., Jong, P., … Nooteboom, S. (2015). The adaptive capacity of institutions in the spatial planning, water, agriculture and nature sectors in the Netherlands. Mitigation and Adaptation Strategies for Global Change, 21(6), 883-903. doi:10.1007/s11027-014-9630-z | es_ES |
dc.description.references | Rigillo, M., & Cervelli, E. (2014). Mapping Urban Vulnerability: The Case Study of Gran Santo Domingo, Dominican Republic. Advanced Engineering Forum, 11, 142-148. doi:10.4028/www.scientific.net/aef.11.142 | es_ES |
dc.description.references | Salas, J., & Yepes, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179, 544-558. doi:10.1016/j.jclepro.2018.01.088 | es_ES |
dc.description.references | Salas, J., & Yepes, V. (2018). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176, 1231-1244. doi:10.1016/j.jclepro.2017.11.249 | es_ES |
dc.description.references | Zhao, P., Chapman, R., Randal, E., & Howden-Chapman, P. (2013). Understanding Resilient Urban Futures: A Systemic Modelling Approach. Sustainability, 5(7), 3202-3223. doi:10.3390/su5073202 | es_ES |
dc.description.references | Salas, J., & Yepes, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8), 2191. doi:10.3390/su11082191 | es_ES |
dc.description.references | Saku Kukkonen, & Jouni Lampinen. (2007). Ranking-Dominance and Many-Objective Optimization. 2007 IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2007.4424990 | es_ES |
dc.description.references | Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 | es_ES |
dc.description.references | Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281. doi:10.1016/j.gloenvcha.2006.02.006 | es_ES |
dc.description.references | Santos, J., Ferreira, A., & Flintsch, G. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production, 164, 1380-1393. doi:10.1016/j.jclepro.2017.07.027 | es_ES |
dc.description.references | Zhang, Chen, Cai, Gao, Zhang, Liu, … Li. (2019). Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. International Journal of Environmental Research and Public Health, 16(22), 4442. doi:10.3390/ijerph16224442 | es_ES |
dc.description.references | Baudrit, C., Taillandier, F., Tran, T. T. P., & Breysse, D. (2018). Uncertainty Processing and Risk Monitoring in Construction Projects Using Hierarchical Probabilistic Relational Models. Computer-Aided Civil and Infrastructure Engineering, 34(2), 97-115. doi:10.1111/mice.12391 | es_ES |
dc.description.references | Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26. doi:10.1016/0377-2217(90)90057-i | es_ES |
dc.description.references | Singh, R. P., & Nachtnebel, H. P. (2016). Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal. Renewable and Sustainable Energy Reviews, 55, 43-58. doi:10.1016/j.rser.2015.10.138 | es_ES |
dc.description.references | Convertino, M., Muñoz-Carpena, R., Chu-Agor, M. L., Kiker, G. A., & Linkov, I. (2014). Untangling drivers of species distributions: Global sensitivity and uncertainty analyses of MaxEnt. Environmental Modelling & Software, 51, 296-309. doi:10.1016/j.envsoft.2013.10.001 | es_ES |
dc.description.references | Groen, E. A., Bokkers, E. A. M., Heijungs, R., & de Boer, I. J. M. (2016). Methods for global sensitivity analysis in life cycle assessment. The International Journal of Life Cycle Assessment, 22(7), 1125-1137. doi:10.1007/s11367-016-1217-3 | es_ES |
dc.description.references | Evelyne Groen, Global Sensitivity Analysishttps://evelynegroen.github.io/Code/globalsensitivity.html | es_ES |
dc.description.references | Convertino, M., & Valverde, L. J. (2013). Portfolio Decision Analysis Framework for Value-Focused Ecosystem Management. PLoS ONE, 8(6), e65056. doi:10.1371/journal.pone.0065056 | es_ES |
dc.description.references | García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 | es_ES |
dc.description.references | McGlashan, A., Verrinder, G., & Verhagen, E. (2018). Working towards More Effective Implementation, Dissemination and Scale-Up of Lower-Limb Injury-Prevention Programs: Insights from Community Australian Football Coaches. International Journal of Environmental Research and Public Health, 15(2), 351. doi:10.3390/ijerph15020351 | es_ES |
dc.description.references | YEPES, V., TORRES-MACHI, C., CHAMORRO, A., & PELLICER, E. (2016). OPTIMAL PAVEMENT MAINTENANCE PROGRAMS BASED ON A HYBRID GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE ALGORITHM. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 22(4), 540-550. doi:10.3846/13923730.2015.1120770 | es_ES |
dc.description.references | Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 | es_ES |
dc.description.references | Sierra, L. A., Pellicer, E., & Yepes, V. (2016). Social Sustainability in the Lifecycle of Chilean Public Infrastructure. Journal of Construction Engineering and Management, 142(5), 05015020. doi:10.1061/(asce)co.1943-7862.0001099 | es_ES |
dc.description.references | Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |