Mostrar el registro sencillo del ítem
dc.contributor.author | Rodrigo-Ilarri, Javier | es_ES |
dc.contributor.author | Rodrigo-Clavero, María-Elena | es_ES |
dc.contributor.author | Cassiraga, Eduardo Fabián | es_ES |
dc.contributor.author | Ballesteros-Almonacid, Leticia | es_ES |
dc.date.accessioned | 2021-02-19T04:34:25Z | |
dc.date.available | 2021-02-19T04:34:25Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161866 | |
dc.description.abstract | [EN] Terbuthylazine is commonly used as an herbicide to control weeds and prevent non-desirable grow of algae, fungi and bacteria in many agricultural applications. Despite its highly negative effects on human health, environmental modeling of this kind of pesticide in the vadose zone till reaching groundwater is still not being done on a regular basis. This work shows results obtained by two mathematical models (PESTAN and PRZM-GW) to explain terbuthylazine behavior in the non-saturated zone of a vertical soil column. One of the models use a one-dimensional analytical formulation to simulate the movement of terbuthylazine through the non-saturated soil to the phreatic surface. The second and more complex model uses a whole set of parameters to solve a modified version of the mass transport equation considering the combined effect of advection, dispersion and reactive transport processes. Both models have been applied as a case-study on a particular location in South Valencia Aquifer (Spain). A whole set of simulation scenarios have been designed to perform a parameter sensitivity analysis. Despite both models leading to terbuthylazine¿s concentration values, numerical simulations show that PRZM-GW is able to reproduce concentration observations leading to much more accurately results than those obtained using PESTAN. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Terbuthylazine | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Vadose zone | es_ES |
dc.subject | Organic pollutants | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Assessment of Groundwater Contamination by Terbuthylazine Using Vadose Zone Numerical Models. Case Study of Valencia Province (Spain) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17093280 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.; Cassiraga, EF.; Ballesteros-Almonacid, L. (2020). Assessment of Groundwater Contamination by Terbuthylazine Using Vadose Zone Numerical Models. Case Study of Valencia Province (Spain). International Journal of Environmental research and Public Health. 17(9):1-17. https://doi.org/10.3390/ijerph17093280 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17093280 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 32397178 | es_ES |
dc.identifier.pmcid | PMC7246838 | es_ES |
dc.relation.pasarela | S\412055 | es_ES |
dc.description.references | University of Hertfordshirehttps://sitem.herts.ac.uk/aeru/footprint/es/Reports/623.htm | es_ES |
dc.description.references | Brusseau, M. L., Rao, P. S. C., & Gillham, R. W. (1989). Sorption nonideality during organic contaminant transport in porous media. Critical Reviews in Environmental Control, 19(1), 33-99. doi:10.1080/10643388909388358 | es_ES |
dc.description.references | Brusseau, M. L., & Rao, P. S. C. (1991). Influence of sorbate structure on nonequilibrium sorption of organic compounds. Environmental Science & Technology, 25(8), 1501-1506. doi:10.1021/es00020a022 | es_ES |
dc.description.references | Brusseau, M. L., & Reid, M. E. (1991). Nonequilibrium sorption of organic chemicals by low organic-carbon aquifer materials. Chemosphere, 22(3-4), 341-350. doi:10.1016/0045-6535(91)90322-5 | es_ES |
dc.description.references | Brusseau, M. L., Jessup, R. E., & Rao, P. S. C. (1989). Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resources Research, 25(9), 1971-1988. doi:10.1029/wr025i009p01971 | es_ES |
dc.description.references | Francaviglia, R., Capri, E., Klein, M., Hosang, J., Aden, K., Trevisan, M., & Errera, G. (2000). Comparing and evaluating pesticide leaching models: results for the Tor Mancina data set (Italy). Agricultural Water Management, 44(1-3), 135-151. doi:10.1016/s0378-3774(99)00089-x | es_ES |
dc.description.references | Francaviglia, R., & Capri, E. (2000). Lysimeter experiments with metolachlor in Tor Mancina (Italy). Agricultural Water Management, 44(1-3), 63-74. doi:10.1016/s0378-3774(99)00084-0 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |