- -

Proposal of Sustainability Indicators for the Design of Small-Span Bridges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Proposal of Sustainability Indicators for the Design of Small-Span Bridges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milani, Cleovir José es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author Kripka, Moacir es_ES
dc.date.accessioned 2021-02-19T04:34:26Z
dc.date.available 2021-02-19T04:34:26Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161867
dc.description.abstract [EN] The application of techniques to analyze sustainability in the life cycle of small-span bridge superstructures is presented in this work. The objective was to obtain environmental and economic indicators for integration into the decision-making process to minimize the environmental impact, reduce resource consumption and minimize life cycle costs. Twenty-seven configurations of small-span bridges (6 to 20 m) of the following types were analyzed: steel¿concrete composite bridges, cast in situ reinforced concrete bridges, precast bridges and prestressed concrete bridges, comprising a total of 405 structures. Environmental impacts and costs were quantified via life cycle environmental assessment and life cycle cost analysis following the boundaries of systems from the extraction of materials to the end of bridge life ("from cradle to grave"). In general, the results indicated that the environmental performance of the bridges was significantly linked to the material selection and bridge configuration. In addition, the study enabled the identification of the products and processes with the greatest impact in order to subsidize the design of more sustainable structures and government policies. es_ES
dc.description.sponsorship This research was funded by the Brazilian government in the form of CAPES and CNPq grants, as well as the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bridges es_ES
dc.subject Sustainability es_ES
dc.subject Design es_ES
dc.subject Life cycle assessment es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Proposal of Sustainability Indicators for the Design of Small-Span Bridges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17124488 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Milani, CJ.; Yepes, V.; Kripka, M. (2020). Proposal of Sustainability Indicators for the Design of Small-Span Bridges. International Journal of Environmental research and Public Health. 17(12):1-23. https://doi.org/10.3390/ijerph17124488 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17124488 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32580444 es_ES
dc.identifier.pmcid PMC7344769 es_ES
dc.relation.pasarela S\416369 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Bridges: Structures and Materials, Ancient and Modernhttps://www.intechopen.com/online-first/bridges-structures-and-materials-ancient-and-modern es_ES
dc.description.references Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z es_ES
dc.description.references Long, A. E., Basheer, P. A. M., Taylor, S. E., Rankin, B. G. I., & Kirkpatrick, J. (2008). Sustainable bridge construction through innovative advances. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 161(4), 183-188. doi:10.1680/bren.2008.161.4.183 es_ES
dc.description.references Přikryl, R., Török, Á., Theodoridou, M., Gomez-Heras, M., & Miskovsky, K. (2016). Geomaterials in construction and their sustainability: understanding their role in modern society. Geological Society, London, Special Publications, 416(1), 1-22. doi:10.1144/sp416.21 es_ES
dc.description.references Zhang, Y.-R., Wu, W.-J., & Wang, Y.-F. (2016). Bridge life cycle assessment with data uncertainty. The International Journal of Life Cycle Assessment, 21(4), 569-576. doi:10.1007/s11367-016-1035-7 es_ES
dc.description.references Itoh, Y., Hirano, T., Nagata, H., Hammad, A., Nishido, T., & Kashima, A. (1996). STUDY ON BRIDGE TYPE SELECTION SYSTEM CONSIDERING ENVIRONMENTAL IMPACT. Doboku Gakkai Ronbunshu, 1996(553), 187-199. doi:10.2208/jscej.1996.553_187 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815 es_ES
dc.description.references Penadés-Plà, V., Yepes, V., & García-Segura, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209, 109968. doi:10.1016/j.engstruct.2019.109968 es_ES
dc.description.references Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 es_ES
dc.description.references Fauzi, R. T., Lavoie, P., Sorelli, L., Heidari, M. D., & Amor, B. (2019). Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability, 11(3), 636. doi:10.3390/su11030636 es_ES
dc.description.references Swarr, T. E., Hunkeler, D., Klöpffer, W., Pesonen, H.-L., Ciroth, A., Brent, A. C., & Pagan, R. (2011). Environmental life-cycle costing: a code of practice. The International Journal of Life Cycle Assessment, 16(5), 389-391. doi:10.1007/s11367-011-0287-5 es_ES
dc.description.references Veganzones Muñoz, J. J., Pettersson, L., Sundquist, H., & Karoumi, R. (2016). Life-cycle cost analysis as a tool in the developing process for new bridge edge beam solutions. Structure and Infrastructure Engineering, 12(9), 1185-1201. doi:10.1080/15732479.2015.1095770 es_ES
dc.description.references Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002 es_ES
dc.description.references García-Segura, T., Yepes, V., & Frangopol, D. M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1), 139-150. doi:10.1007/s00158-017-1653-0 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003 es_ES
dc.description.references Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246 es_ES
dc.description.references Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767 es_ES
dc.description.references Bansal, S., Singh, A., & Singh, S. K. (2017). Sustainability evaluation of two iconic bridge corridors under construction using Fuzzy Vikor technique: A case study. Revista ALCONPAT, 7(1), 1-14. doi:10.21041/ra.v7i1.171 es_ES
dc.description.references ReCiPe is the Most Recent and Harmonized Indicator Approach Available in Life Cycle Impact Assessmenthttps://www.pre-sustainability.com/recipe es_ES
dc.description.references SimaPro Database Manual Methods Libraryhttps://www.pre-sustainability.com/download/DatabaseManualMethods.pdf es_ES
dc.description.references Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6). doi:10.1007/bf02978505 es_ES
dc.description.references Siche, J. R., Agostinho, F., Ortega, E., & Romeiro, A. (2008). Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecological Economics, 66(4), 628-637. doi:10.1016/j.ecolecon.2007.10.023 es_ES
dc.description.references Waas, T., Hugé, J., Verbruggen, A., & Wright, T. (2011). Sustainable Development: A Bird’s Eye View. Sustainability, 3(10), 1637-1661. doi:10.3390/su3101637 es_ES
dc.description.references Kuhlmann, U., Maier, P., Friedrich, H., Kaschner, R., Mensinger, M., Pfaffinger, M., … Zinke, T. (2011). Ganzheitliche Bewertung von Stahl- und Verbundbrücken nach Kriterien der Nachhaltigkeit. Stahlbau, 80(10), 703-710. doi:10.1002/stab.201101474 es_ES
dc.description.references Life Cycle Initiative. What is Life Cycle Thinking?http://www.lifecycleinitiative.org/starting-life-cycle-thinking/what-is-life-cycle-thinking/ es_ES
dc.description.references Penadés-Plà, V., Martínez-Muñoz, D., García-Segura, T., Navarro, I. J., & Yepes, V. (2020). Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges. Sustainability, 12(10), 4265. doi:10.3390/su12104265 es_ES
dc.description.references Obras de Arte Mistas—AnáLise Holística Aplicada a Casos Europeus. 7° Congresso Rodoviário Português-Novos Desafios Para a Atividade Rodoviáriahttp://www.crp.pt/docs/A45S117-7CRP_prog_net.pdf es_ES
dc.description.references Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 es_ES
dc.description.references Nielsen, D., Raman, D., & Chattopadhyay, G. (2013). Life cycle management for railway bridge assets. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(5), 570-581. doi:10.1177/0954409713501297 es_ES
dc.description.references García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 es_ES
dc.description.references Navarro, I. J., Martí, J. V., & Yepes, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74, 23-34. doi:10.1016/j.eiar.2018.10.001 es_ES
dc.description.references Kuhlmann, U., Maier, P., Zinke, T., Ummenhofer, T., Pfaffinger, M., Mensinger, M., … Friedrich, H. (2014). Nachhaltigkeitsanalysen von Stahlverbundbrücken. Stahlbau, 83(7), 476-486. doi:10.1002/stab.201410179 es_ES
dc.description.references Pang, B., Yang, P., Wang, Y., Kendall, A., Xie, H., & Zhang, Y. (2015). Life cycle environmental impact assessment of a bridge with different strengthening schemes. The International Journal of Life Cycle Assessment, 20(9), 1300-1311. doi:10.1007/s11367-015-0936-1 es_ES
dc.description.references Sabatino, S., Frangopol, D. M., & Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310-321. doi:10.1016/j.engstruct.2015.07.030 es_ES
dc.description.references Almeida, J. O., Teixeira, P. F., & Delgado, R. M. (2013). Life cycle cost optimisation in highway concrete bridges management. Structure and Infrastructure Engineering, 11(10), 1263-1276. doi:10.1080/15732479.2013.845578 es_ES
dc.description.references Fifer Bizjak, K., & Lenart, S. (2018). Life cycle assessment of a geosynthetic-reinforced soil bridge system – A case study. Geotextiles and Geomembranes, 46(5), 543-558. doi:10.1016/j.geotexmem.2018.04.012 es_ES
dc.description.references Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., … van Zelm, R. (2016). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. doi:10.1007/s11367-016-1246-y es_ES
dc.description.references Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307 es_ES
dc.description.references Padgett, J. E., & Tapia, C. (2013). Sustainability of Natural Hazard Risk Mitigation: Life Cycle Analysis of Environmental Indicators for Bridge Infrastructure. Journal of Infrastructure Systems, 19(4), 395-408. doi:10.1061/(asce)is.1943-555x.0000138 es_ES
dc.description.references Arya, C., Amiri, A., & Vassie, P. (2015). A new method for evaluating the sustainability of bridges. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 168(6), 441-453. doi:10.1680/stbu.14.00069 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem