- -

Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valero-Gómez, A. es_ES
dc.contributor.author Molina Puerto, Javier es_ES
dc.contributor.author Pradas, S. es_ES
dc.contributor.author López-Tendero, M. J. es_ES
dc.contributor.author Bosch, F. es_ES
dc.date.accessioned 2021-02-19T04:34:29Z
dc.date.available 2021-02-19T04:34:29Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 0928-0707 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161868
dc.description.abstract [EN] Cerium-containing microcapsules were obtained by means of water/oil (W/O) emulsion technology using tetraethyl orthosilicate (TEOS) as the precursor. Synthesis parameters as water/ethanol molar ratio, surfactant concentration, temperature, synthesis time, were optimized to obtain microcapsules with adequate form and size. Cerium salt is a corrosion inhibitor. Scanning electron microscopy (SEM) was employed to characterize the microcapsules and EDS and energy dispersive X-ray (EDX) microanalysis to assess encapsulation of cerium. The synthesized microcapsules were incorporated in the sol-gel coating that was sprayed on AA2024 aluminum alloy. The morphology of the sol-gel coating and the distribution of the microcapsules were investigated by SEM and EDX and the corrosion resistance of the coated samples was evaluated by electrochemical impedance spectroscopy (EIS) and open circuit potential measurements. Cerium microcapsules can act as Ce nanoreservoirs blocking defects produced in the organic-inorganic hybrid coating by precipitating Ce oxide/ hydroxide and nanoloads slowing the diffusion of redox species to the aluminum surface. Higher corrosion resistance was obtained with microencapsulation of cerium than with nonencapsulated cerium. es_ES
dc.description.sponsorship Authors wish to thank to the Instituto Valenciano de Competitividad Empresarial (IVACE) (project reference IMAMCC/2016/1) for the financial support. Electron Microscopy Service of the UPV (Universitat Politecnica de Valencia) is gratefully acknowledged for help with FESEM and EDX characterization. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Sol-Gel Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sol-gel es_ES
dc.subject Encapsulation es_ES
dc.subject Cerium es_ES
dc.subject Corrosion protection es_ES
dc.subject Aluminum es_ES
dc.subject Organic-inorganic hybrid coating es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10971-019-05151-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCC%2F2016%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Valero-Gómez, A.; Molina Puerto, J.; Pradas, S.; López-Tendero, MJ.; Bosch, F. (2020). Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024. Journal of Sol-Gel Science and Technology. 93(1):36-51. https://doi.org/10.1007/s10971-019-05151-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10971-019-05151-8 es_ES
dc.description.upvformatpinicio 36 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 93 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\413808 es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.description.references Nace International, International measures of prevention, application, and economics of corrosion technology study (2016). http://impact.nace.org/documents/Nace-International-Report.pdf . Accessed 12 Apr 2019. es_ES
dc.description.references Yadla SV, Sridevi V, Lakshmi MVVC, Kumari SPK (2012) A review on corrosion of metals and protection. Int J Eng Sci Adv Technol 2:637–644 es_ES
dc.description.references Dariva CG, Galio AF (2014) Corrosion inhibitors – principles, mechanisms and applications. In: Aliofkhazraei M (ed), Developments in Corrosion Protection. InTech, London. https://www.intechopen.com/books/developments-in-corrosion-protection/corrosion-inhibitors-principles-mechanisms-and-applications es_ES
dc.description.references Rani BEA, Basu BBJ (2012) Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros 2012:380217. https://www.hindawi.com/journals/ijc/2012/380217/ es_ES
dc.description.references Gece G (2012) Drugs: a review of promising novel corrosion inhibitors. Corros Sci 53:3873–3898 es_ES
dc.description.references Raja PB, Sethuraman MG (2008) Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater Lett 62:113–116 es_ES
dc.description.references Umoren SA, Solomon MM (2017) Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review. J. Environ Chem Eng 5:246–273 es_ES
dc.description.references Ivušić F, Lahodny-Šarc O, Curković HO, Alar V (2015) The synergistic inhibition of carbon steel corrosion in seawater by cerium chloride and sodium gluconate. Corros Sci 98:88–97 es_ES
dc.description.references Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2006) Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B 110:5515–5528 es_ES
dc.description.references Hughes AE, Mol JMC, Cole IS (2015) Coatings for corrosion prevention based on rare earths. In: M Forsyth, B Hinton (ed), Rare earth-based corrosion inhibitors. Woodhead Publishing, Sawston, Cambridge. https://www.elsevier.com/books/rare-earth-based-corrosion-inhibitors/forsyth/978-0-85709-347-9 es_ES
dc.description.references Figueira RB, Silva CJR, Pereira EV (2015) Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12:1–35 es_ES
dc.description.references Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112 es_ES
dc.description.references Kumar N, Subasri R (2012) Corrosion protection and self-healing by sol-gel process: a review of recent patent literature. Recent Pat Corros Sci 2:148–163 es_ES
dc.description.references Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37 es_ES
dc.description.references Palomino LM, Suegama PH, Aoki IV, Montemor MF, De Melo HG (2009) Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024-T3. Corros Sci 51:1238–1250 es_ES
dc.description.references Hammer P, Schiavetto MG, dos Santos FC, Benedetti AV, Pulcinelli SH, Santilli CV (2010) Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping. J Non-Cryst Solids 356:2606–2612 es_ES
dc.description.references Suegama PH, Sarmento VHV, Montemor MF, Benedetti AV, de Melo HG, Aoki IV, Santilli CV (2010) Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel. Electrochim Acta 55:5100–5109 es_ES
dc.description.references Capelossi VR, Aoki IV (2013) Influence of sonication on anticorrosion properties of a sulfursilane film dopped with Ce (IV) on galvannealed steel. Prog Org Coat 76:812–820 es_ES
dc.description.references Paussa L, Rosero NC, Navarro NC, Bravin D, Andreatta F, Lanzutti A, Aparicio M, Durán A, Fedrizzi L (2012) ZrO2 sol–gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060. Prog Org Coat 74:311–319 es_ES
dc.description.references Silva FS, Suegama PH, Silva WP, Rinaldi AW, Domingues NLC, Matsumoto MY, Salazar LG (2015) Effect of different dopants in films TEOS/MPTS used to protect the carbon steel. Mater Sci Forum 805:167–171 es_ES
dc.description.references Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M (2008) Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci 50:1283–1291 es_ES
dc.description.references Naderi R, Fedel M, Deflorian F, Poelman M, Olivier M (2013) Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol–gel layer applied on pure aluminum. Surf Coat Technol 224:93–100 es_ES
dc.description.references Zadeh MA, Garcia SJ, van der Zwaag S (2013) Routes to extrinsic and intrinsic self-healing corrosion protective sol-gel coatings: a review. Self Heal Mater 1:1–18 es_ES
dc.description.references Matsuda T, Jadhav N, Kashi KB, Jensen M, Suryawanshi A, Gellinga VJ (2016) Self-healing ability and particle size effect of encapsulated cerium nitrate into pH sensitive microcapsules. Prog Org Coat 90:425–430 es_ES
dc.description.references Abourayana HM, Dowling DP (2015) Plasma processing for tailoring the surface properties of polymers. In: Aliofkhazraei M (ed), Surface energy. InTech, London. https://www.intechopen.com/books/surface-energy es_ES
dc.description.references Zille A, Oliveira FR, Souto AP (2015) Plasma treatment in textile industry. Plasma Process Polym 12:98–131 es_ES
dc.description.references Williams DF, Kellar EJC, Jesson DA, Watts JF (2017) Surface analysis of 316 stainless steel treated with cold atmospheric plasma. Appl Surf Sci 403:240–247 es_ES
dc.description.references Kim MC, Yang SH, Boo J-H, Han JG (2003) Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surf Coat Technol 174–175:839–844 es_ES
dc.description.references Ciriminna R, Sciortino M, Alonzo G, de Schrijver A, Pagliaro M (2011) From molecules to systems: sol-gel microencapsulation in silica-based materials. Chem Rev 111:765–789 es_ES
dc.description.references Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) The sol−gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620 es_ES
dc.description.references Kesmez Ö, Burunkaya E, Kiraz N, Çamurlu HE, Asiltürk M, Arpaç E (2011) Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings. J Non-Cryst Solids 357:3130–3135 es_ES
dc.description.references Bruker, Periodic table of elements and X-ray energies. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/HH-XRF/Misc/Periodic_Table_and_X-ray_Energies.pdf . Accessed 12 April 2019 es_ES
dc.description.references Suegama PH, de Melo HG, Benedetti AV, Aoki IV (2009) Influence of cerium (IV) ions on the mechanism of organosilane polymerization and on the improvement of its barrier properties. Electrochim Acta 54:2655–2662 es_ES
dc.description.references Fedel M, Callone E, Fabbiana M, Deflorian F, Dirè S (2017) Influence of Ce3+ doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection. Appl Surf Sci 414:82–91 es_ES
dc.description.references National Institute of Advanced Industrial Science and Technology (AIST), Spectral database for organic compounds SDBS. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi . Accessed 12 April 2019 es_ES
dc.description.references Garcia-Heras M, Jiménez-Morales A, Casal B, Galvan JC, Radzki S, Villegas MA (2004) Preparation and electrochemical study of cerium–silica sol–gel thin films. J Alloy Compd 380:219–224 es_ES
dc.description.references Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319 es_ES
dc.description.references Peng S, Zhao W, Zeng Z, Li H, Xue Q, Wu X (2013) Preparation of anticorrosion hybrid silica sol–gel coating using Ce(NO3)3 as catalyst. J Sol–Gel Sci Technol 66:133–138 es_ES
dc.description.references Kappert EJ, Pavlenko D, Malzbender J, Nijmeijer A, Benes NE, Tsai PA (2015) Formation and prevention of fractures in sol–gel-derived thin films. Soft Matter 11:882–888 es_ES
dc.description.references Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229 es_ES
dc.description.references Wang H, Akid R (2008) Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel. Corros Sci 50:1142–1148 es_ES
dc.description.references Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205 es_ES
dc.description.references Ahmadi A, Ramezanzadeh B, Mahdavian M (2016) Hybrid silane coating reinforced with silanized graphene oxide nanosheets with improved corrosion protective performance. RSC Adv 6:54102–54112 es_ES
dc.description.references Santana I, Pepe A, Schreiner W, Pellice S, Ceré S (2016) Hybrid sol-gel coatings containing clay nanoparticles for corrosion protection of mild steel. Electrochim Acta 203:396–403 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem