Mostrar el registro sencillo del ítem
dc.contributor.author | Valero-Gómez, A. | es_ES |
dc.contributor.author | Molina Puerto, Javier | es_ES |
dc.contributor.author | Pradas, S. | es_ES |
dc.contributor.author | López-Tendero, M. J. | es_ES |
dc.contributor.author | Bosch, F. | es_ES |
dc.date.accessioned | 2021-02-19T04:34:29Z | |
dc.date.available | 2021-02-19T04:34:29Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 0928-0707 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161868 | |
dc.description.abstract | [EN] Cerium-containing microcapsules were obtained by means of water/oil (W/O) emulsion technology using tetraethyl orthosilicate (TEOS) as the precursor. Synthesis parameters as water/ethanol molar ratio, surfactant concentration, temperature, synthesis time, were optimized to obtain microcapsules with adequate form and size. Cerium salt is a corrosion inhibitor. Scanning electron microscopy (SEM) was employed to characterize the microcapsules and EDS and energy dispersive X-ray (EDX) microanalysis to assess encapsulation of cerium. The synthesized microcapsules were incorporated in the sol-gel coating that was sprayed on AA2024 aluminum alloy. The morphology of the sol-gel coating and the distribution of the microcapsules were investigated by SEM and EDX and the corrosion resistance of the coated samples was evaluated by electrochemical impedance spectroscopy (EIS) and open circuit potential measurements. Cerium microcapsules can act as Ce nanoreservoirs blocking defects produced in the organic-inorganic hybrid coating by precipitating Ce oxide/ hydroxide and nanoloads slowing the diffusion of redox species to the aluminum surface. Higher corrosion resistance was obtained with microencapsulation of cerium than with nonencapsulated cerium. | es_ES |
dc.description.sponsorship | Authors wish to thank to the Instituto Valenciano de Competitividad Empresarial (IVACE) (project reference IMAMCC/2016/1) for the financial support. Electron Microscopy Service of the UPV (Universitat Politecnica de Valencia) is gratefully acknowledged for help with FESEM and EDX characterization. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Sol-Gel Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sol-gel | es_ES |
dc.subject | Encapsulation | es_ES |
dc.subject | Cerium | es_ES |
dc.subject | Corrosion protection | es_ES |
dc.subject | Aluminum | es_ES |
dc.subject | Organic-inorganic hybrid coating | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10971-019-05151-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMAMCC%2F2016%2F1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Valero-Gómez, A.; Molina Puerto, J.; Pradas, S.; López-Tendero, MJ.; Bosch, F. (2020). Microencapsulation of cerium and its application in sol-gel coatings for the corrosion protection of aluminum alloy AA2024. Journal of Sol-Gel Science and Technology. 93(1):36-51. https://doi.org/10.1007/s10971-019-05151-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10971-019-05151-8 | es_ES |
dc.description.upvformatpinicio | 36 | es_ES |
dc.description.upvformatpfin | 51 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 93 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\413808 | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.description.references | Nace International, International measures of prevention, application, and economics of corrosion technology study (2016). http://impact.nace.org/documents/Nace-International-Report.pdf . Accessed 12 Apr 2019. | es_ES |
dc.description.references | Yadla SV, Sridevi V, Lakshmi MVVC, Kumari SPK (2012) A review on corrosion of metals and protection. Int J Eng Sci Adv Technol 2:637–644 | es_ES |
dc.description.references | Dariva CG, Galio AF (2014) Corrosion inhibitors – principles, mechanisms and applications. In: Aliofkhazraei M (ed), Developments in Corrosion Protection. InTech, London. https://www.intechopen.com/books/developments-in-corrosion-protection/corrosion-inhibitors-principles-mechanisms-and-applications | es_ES |
dc.description.references | Rani BEA, Basu BBJ (2012) Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corros 2012:380217. https://www.hindawi.com/journals/ijc/2012/380217/ | es_ES |
dc.description.references | Gece G (2012) Drugs: a review of promising novel corrosion inhibitors. Corros Sci 53:3873–3898 | es_ES |
dc.description.references | Raja PB, Sethuraman MG (2008) Natural products as corrosion inhibitor for metals in corrosive media—a review. Mater Lett 62:113–116 | es_ES |
dc.description.references | Umoren SA, Solomon MM (2017) Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review. J. Environ Chem Eng 5:246–273 | es_ES |
dc.description.references | Ivušić F, Lahodny-Šarc O, Curković HO, Alar V (2015) The synergistic inhibition of carbon steel corrosion in seawater by cerium chloride and sodium gluconate. Corros Sci 98:88–97 | es_ES |
dc.description.references | Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2006) Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B 110:5515–5528 | es_ES |
dc.description.references | Hughes AE, Mol JMC, Cole IS (2015) Coatings for corrosion prevention based on rare earths. In: M Forsyth, B Hinton (ed), Rare earth-based corrosion inhibitors. Woodhead Publishing, Sawston, Cambridge. https://www.elsevier.com/books/rare-earth-based-corrosion-inhibitors/forsyth/978-0-85709-347-9 | es_ES |
dc.description.references | Figueira RB, Silva CJR, Pereira EV (2015) Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12:1–35 | es_ES |
dc.description.references | Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz 3:91–112 | es_ES |
dc.description.references | Kumar N, Subasri R (2012) Corrosion protection and self-healing by sol-gel process: a review of recent patent literature. Recent Pat Corros Sci 2:148–163 | es_ES |
dc.description.references | Montemor MF (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37 | es_ES |
dc.description.references | Palomino LM, Suegama PH, Aoki IV, Montemor MF, De Melo HG (2009) Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024-T3. Corros Sci 51:1238–1250 | es_ES |
dc.description.references | Hammer P, Schiavetto MG, dos Santos FC, Benedetti AV, Pulcinelli SH, Santilli CV (2010) Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping. J Non-Cryst Solids 356:2606–2612 | es_ES |
dc.description.references | Suegama PH, Sarmento VHV, Montemor MF, Benedetti AV, de Melo HG, Aoki IV, Santilli CV (2010) Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel. Electrochim Acta 55:5100–5109 | es_ES |
dc.description.references | Capelossi VR, Aoki IV (2013) Influence of sonication on anticorrosion properties of a sulfursilane film dopped with Ce (IV) on galvannealed steel. Prog Org Coat 76:812–820 | es_ES |
dc.description.references | Paussa L, Rosero NC, Navarro NC, Bravin D, Andreatta F, Lanzutti A, Aparicio M, Durán A, Fedrizzi L (2012) ZrO2 sol–gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060. Prog Org Coat 74:311–319 | es_ES |
dc.description.references | Silva FS, Suegama PH, Silva WP, Rinaldi AW, Domingues NLC, Matsumoto MY, Salazar LG (2015) Effect of different dopants in films TEOS/MPTS used to protect the carbon steel. Mater Sci Forum 805:167–171 | es_ES |
dc.description.references | Rosero-Navarro NC, Pellice SA, Durán A, Aparicio M (2008) Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci 50:1283–1291 | es_ES |
dc.description.references | Naderi R, Fedel M, Deflorian F, Poelman M, Olivier M (2013) Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol–gel layer applied on pure aluminum. Surf Coat Technol 224:93–100 | es_ES |
dc.description.references | Zadeh MA, Garcia SJ, van der Zwaag S (2013) Routes to extrinsic and intrinsic self-healing corrosion protective sol-gel coatings: a review. Self Heal Mater 1:1–18 | es_ES |
dc.description.references | Matsuda T, Jadhav N, Kashi KB, Jensen M, Suryawanshi A, Gellinga VJ (2016) Self-healing ability and particle size effect of encapsulated cerium nitrate into pH sensitive microcapsules. Prog Org Coat 90:425–430 | es_ES |
dc.description.references | Abourayana HM, Dowling DP (2015) Plasma processing for tailoring the surface properties of polymers. In: Aliofkhazraei M (ed), Surface energy. InTech, London. https://www.intechopen.com/books/surface-energy | es_ES |
dc.description.references | Zille A, Oliveira FR, Souto AP (2015) Plasma treatment in textile industry. Plasma Process Polym 12:98–131 | es_ES |
dc.description.references | Williams DF, Kellar EJC, Jesson DA, Watts JF (2017) Surface analysis of 316 stainless steel treated with cold atmospheric plasma. Appl Surf Sci 403:240–247 | es_ES |
dc.description.references | Kim MC, Yang SH, Boo J-H, Han JG (2003) Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surf Coat Technol 174–175:839–844 | es_ES |
dc.description.references | Ciriminna R, Sciortino M, Alonzo G, de Schrijver A, Pagliaro M (2011) From molecules to systems: sol-gel microencapsulation in silica-based materials. Chem Rev 111:765–789 | es_ES |
dc.description.references | Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) The sol−gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620 | es_ES |
dc.description.references | Kesmez Ö, Burunkaya E, Kiraz N, Çamurlu HE, Asiltürk M, Arpaç E (2011) Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings. J Non-Cryst Solids 357:3130–3135 | es_ES |
dc.description.references | Bruker, Periodic table of elements and X-ray energies. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ElementalAnalysis/HH-XRF/Misc/Periodic_Table_and_X-ray_Energies.pdf . Accessed 12 April 2019 | es_ES |
dc.description.references | Suegama PH, de Melo HG, Benedetti AV, Aoki IV (2009) Influence of cerium (IV) ions on the mechanism of organosilane polymerization and on the improvement of its barrier properties. Electrochim Acta 54:2655–2662 | es_ES |
dc.description.references | Fedel M, Callone E, Fabbiana M, Deflorian F, Dirè S (2017) Influence of Ce3+ doping on molecular organization of Si-based organic/inorganic sol-gel layers for corrosion protection. Appl Surf Sci 414:82–91 | es_ES |
dc.description.references | National Institute of Advanced Industrial Science and Technology (AIST), Spectral database for organic compounds SDBS. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi . Accessed 12 April 2019 | es_ES |
dc.description.references | Garcia-Heras M, Jiménez-Morales A, Casal B, Galvan JC, Radzki S, Villegas MA (2004) Preparation and electrochemical study of cerium–silica sol–gel thin films. J Alloy Compd 380:219–224 | es_ES |
dc.description.references | Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319 | es_ES |
dc.description.references | Peng S, Zhao W, Zeng Z, Li H, Xue Q, Wu X (2013) Preparation of anticorrosion hybrid silica sol–gel coating using Ce(NO3)3 as catalyst. J Sol–Gel Sci Technol 66:133–138 | es_ES |
dc.description.references | Kappert EJ, Pavlenko D, Malzbender J, Nijmeijer A, Benes NE, Tsai PA (2015) Formation and prevention of fractures in sol–gel-derived thin films. Soft Matter 11:882–888 | es_ES |
dc.description.references | Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229 | es_ES |
dc.description.references | Wang H, Akid R (2008) Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol–gel coatings on mild steel. Corros Sci 50:1142–1148 | es_ES |
dc.description.references | Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205 | es_ES |
dc.description.references | Ahmadi A, Ramezanzadeh B, Mahdavian M (2016) Hybrid silane coating reinforced with silanized graphene oxide nanosheets with improved corrosion protective performance. RSC Adv 6:54102–54112 | es_ES |
dc.description.references | Santana I, Pepe A, Schreiner W, Pellice S, Ceré S (2016) Hybrid sol-gel coatings containing clay nanoparticles for corrosion protection of mild steel. Electrochim Acta 203:396–403 | es_ES |