Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Garrido, Antonio J.![]() |
es_ES |
dc.contributor.author | Yepes, V.![]() |
es_ES |
dc.date.accessioned | 2021-02-19T04:34:37Z | |
dc.date.available | 2021-02-19T04:34:37Z | |
dc.date.issued | 2020-06-10 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161872 | |
dc.description.abstract | [EN] In the architecture sector, single-family housing projects are often linked to demand from private clients, without arousing very much interest from developers, who seek higher returns on other real estate assets. For any owner, the construction of a home is perhaps the biggest investment of their life, and success or failure will therefore depend on the right decision. This paper presents a study of three different structural alternatives that are applied to a terraced house to facilitate decision making by a self-promoter, based on multiple criteria and taking sustainability into consideration. The methodology used allows us to identify the structure and to evaluate the different alternatives proposed here in order to find the optimal option. A comparison is drawn between a traditional reference solution, a pre-cast design and finally a technological option based on an integral reinforced concrete structural system. Although the technical feasibility of these last two solutions has been proven, they have not yet received enough attention from researchers to allow the thermal envelope of the building to be solved at the same time as the structure itself. The last of these alternatives achieved the best valuation, although it is neither the most widely used alternative or the quickest to build. This study demonstrates the practical versatility of a method that is seldom used in residential construction and only rarely used for single-family homes. We evaluate three alternatives for optimizing the structure and enveloping walls of a self-promoted, terraced house from a sustainability perspective. The study provides a set of indicators for assessing the environmental, economic and social aspects of a building throughout its life cycle. The sustainability index of the structural envelope obtained in this way allows a self-promoter to prioritize solutions to ensure its global sustainability. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). The authors would also like to express their gratitude to the companies that provided some of the data and information necessary to carry out this work (Plataforma Logistica YTONG Sur BigMat Multipio and Elesdopa (c) International). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Single-family house | es_ES |
dc.subject | Multi-criteria decision making | es_ES |
dc.subject | Sustainable design | es_ES |
dc.subject | MIVES | es_ES |
dc.subject | Ytong | es_ES |
dc.subject | Elesdopa | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2020.120556 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Sánchez-Garrido, AJ.; Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production. 258:1-16. https://doi.org/10.1016/j.jclepro.2020.120556 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2020.120556 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 258 | es_ES |
dc.relation.pasarela | S\407085 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Alarcon, B., Aguado, A., Manga, R., & Josa, A. (2010). A Value Function for Assessing Sustainability: Application to Industrial Buildings. Sustainability, 3(1), 35-50. doi:10.3390/su3010035 | es_ES |
dc.description.references | Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394-416. doi:10.1016/j.rser.2013.08.037 | es_ES |
dc.description.references | Casanovas-Rubio, M. del M., Pujadas, P., Pardo-Bosch, F., Blanco, A., & Aguado, A. (2019). Sustainability assessment of trenches including the new eco-trench: A multi-criteria decision-making tool. Journal of Cleaner Production, 238, 117957. doi:10.1016/j.jclepro.2019.117957 | es_ES |
dc.description.references | Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163-176. doi:10.1016/j.ijpe.2015.01.002 | es_ES |
dc.description.references | Cuadrado, J., Zubizarreta, M., Rojí, E., Larrauri, M., & Álvarez, I. (2016). Sustainability assessment methodology for industrial buildings: three case studies. Civil Engineering and Environmental Systems, 33(2), 106-124. doi:10.1080/10286608.2016.1148143 | es_ES |
dc.description.references | De la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770. doi:10.1016/j.jclepro.2015.07.002 | es_ES |
dc.description.references | Dowsett, R., Green, M., Sexton, M., & Harty, C. (2019). Projecting at the project level: MMC supply chain integration roadmap for small housebuilders. Construction Innovation, 19(2), 193-211. doi:10.1108/ci-07-2017-0059 | es_ES |
dc.description.references | Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748-761. doi:10.1016/j.conbuildmat.2018.02.045 | es_ES |
dc.description.references | García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 | es_ES |
dc.description.references | García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 | es_ES |
dc.description.references | Ilangkumaran, M., Karthikeyan, M., Ramachandran, T., Boopathiraja, M., & Kirubakaran, B. (2015). Risk analysis and warning rate of hot environment for foundry industry using hybrid MCDM technique. Safety Science, 72, 133-143. doi:10.1016/j.ssci.2014.08.011 | es_ES |
dc.description.references | Janjua, S., Sarker, P., & Biswas, W. (2019). Impact of Service Life on the Environmental Performance of Buildings. Buildings, 9(1), 9. doi:10.3390/buildings9010009 | es_ES |
dc.description.references | Josa, A., Aguado, A., Cardim, A., & Byars, E. (2007). Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cement and Concrete Research, 37(5), 781-788. doi:10.1016/j.cemconres.2007.02.004 | es_ES |
dc.description.references | Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291 | es_ES |
dc.description.references | Keeney, R. L., Raiffa, H., & Rajala, D. W. (1979). Decisions with Multiple Objectives: Preferences and Value Trade-Offs. IEEE Transactions on Systems, Man, and Cybernetics, 9(7), 403-403. doi:10.1109/tsmc.1979.4310245 | es_ES |
dc.description.references | Liou, J. J. H., & Tzeng, G.-H. (2012). COMMENTS ON «MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW». Technological and Economic Development of Economy, 18(4), 672-695. doi:10.3846/20294913.2012.753489 | es_ES |
dc.description.references | Liu, S., Wang, J., & Wu, W. (2017). To buy or not to buy: household risk hedging of housing costs. Accounting & Finance, 57(5), 1417-1445. doi:10.1111/acfi.12333 | es_ES |
dc.description.references | Marjaba, G. E., & Chidiac, S. E. (2016). Sustainability and resiliency metrics for buildings – Critical review. Building and Environment, 101, 116-125. doi:10.1016/j.buildenv.2016.03.002 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., & Martí, J. V. (2019). A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Advances in Civil Engineering, 2019, 1-16. doi:10.1155/2019/6134803 | es_ES |
dc.description.references | Pardo-Bosch, F., & Aguado, A. (2014). Investment priorities for the management of hydraulic structures. Structure and Infrastructure Engineering, 11(10), 1338-1351. doi:10.1080/15732479.2014.964267 | es_ES |
dc.description.references | Paya-Zaforteza, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693-704. doi:10.1007/s11012-010-9285-0 | es_ES |
dc.description.references | Pellicer, E., Sierra, L. A., & Yepes, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113, 884-896. doi:10.1016/j.jclepro.2015.11.010 | es_ES |
dc.description.references | Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 | es_ES |
dc.description.references | Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49-58. doi:10.1016/j.buildenv.2012.01.007 | es_ES |
dc.description.references | Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882-893. doi:10.1016/j.conbuildmat.2013.09.009 | es_ES |
dc.description.references | Pons, O., de la Fuente, A., & Aguado, A. (2016). The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability, 8(5), 460. doi:10.3390/su8050460 | es_ES |
dc.description.references | Pujadas, P., Cavalaro, S. H. P., & Aguado, A. (2018). Mives multicriteria assessment of urban-pavement conditions: application to a case study in Barcelona. Road Materials and Pavement Design, 20(8), 1827-1843. doi:10.1080/14680629.2018.1474788 | es_ES |
dc.description.references | Queipo, J., Navarro, J. M., Izquierdo, M., Del Águila, A., Guinea, D., Villamor, M., … Neila, J. (2009). Proyecto de investigación INVISO: industrialización de viviendas sostenibles. Informes de la Construcción, 61(513), 73-86. doi:10.3989/ic.09.001 | es_ES |
dc.description.references | San-José Lombera, J.-T., & Cuadrado Rojo, J. (2010). Industrial building design stage based on a system approach to their environmental sustainability. Construction and Building Materials, 24(4), 438-447. doi:10.1016/j.conbuildmat.2009.10.019 | es_ES |
dc.description.references | Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 | es_ES |
dc.description.references | Stender, M., & Walter, A. (2018). The role of social sustainability in building assessment. Building Research & Information, 47(5), 598-610. doi:10.1080/09613218.2018.1468057 | es_ES |
dc.description.references | Tabner, I. T. (2016). Buying versus renting – Determinants of the net present value of home ownership for individual households. International Review of Financial Analysis, 48, 233-246. doi:10.1016/j.irfa.2016.10.004 | es_ES |
dc.description.references | Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability, 6(9), 5512-5534. doi:10.3390/su6095512 | es_ES |
dc.description.references | Yepes, V., Pellicer, E., & Ortega, A. J. (2012). Designing a Benchmark Indicator for Managerial Competences in Construction at the Graduate Level. Journal of Professional Issues in Engineering Education and Practice, 138(1), 48-54. doi:10.1061/(asce)ei.1943-5541.0000075 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |