- -

Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-Garrido, Antonio J. es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-19T04:34:37Z
dc.date.available 2021-02-19T04:34:37Z
dc.date.issued 2020-06-10 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161872
dc.description.abstract [EN] In the architecture sector, single-family housing projects are often linked to demand from private clients, without arousing very much interest from developers, who seek higher returns on other real estate assets. For any owner, the construction of a home is perhaps the biggest investment of their life, and success or failure will therefore depend on the right decision. This paper presents a study of three different structural alternatives that are applied to a terraced house to facilitate decision making by a self-promoter, based on multiple criteria and taking sustainability into consideration. The methodology used allows us to identify the structure and to evaluate the different alternatives proposed here in order to find the optimal option. A comparison is drawn between a traditional reference solution, a pre-cast design and finally a technological option based on an integral reinforced concrete structural system. Although the technical feasibility of these last two solutions has been proven, they have not yet received enough attention from researchers to allow the thermal envelope of the building to be solved at the same time as the structure itself. The last of these alternatives achieved the best valuation, although it is neither the most widely used alternative or the quickest to build. This study demonstrates the practical versatility of a method that is seldom used in residential construction and only rarely used for single-family homes. We evaluate three alternatives for optimizing the structure and enveloping walls of a self-promoted, terraced house from a sustainability perspective. The study provides a set of indicators for assessing the environmental, economic and social aspects of a building throughout its life cycle. The sustainability index of the structural envelope obtained in this way allows a self-promoter to prioritize solutions to ensure its global sustainability. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). The authors would also like to express their gratitude to the companies that provided some of the data and information necessary to carry out this work (Plataforma Logistica YTONG Sur BigMat Multipio and Elesdopa (c) International). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Single-family house es_ES
dc.subject Multi-criteria decision making es_ES
dc.subject Sustainable design es_ES
dc.subject MIVES es_ES
dc.subject Ytong es_ES
dc.subject Elesdopa es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.120556 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Sánchez-Garrido, AJ.; Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production. 258:1-16. https://doi.org/10.1016/j.jclepro.2020.120556 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.120556 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 258 es_ES
dc.relation.pasarela S\407085 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Alarcon, B., Aguado, A., Manga, R., & Josa, A. (2010). A Value Function for Assessing Sustainability: Application to Industrial Buildings. Sustainability, 3(1), 35-50. doi:10.3390/su3010035 es_ES
dc.description.references Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394-416. doi:10.1016/j.rser.2013.08.037 es_ES
dc.description.references Casanovas-Rubio, M. del M., Pujadas, P., Pardo-Bosch, F., Blanco, A., & Aguado, A. (2019). Sustainability assessment of trenches including the new eco-trench: A multi-criteria decision-making tool. Journal of Cleaner Production, 238, 117957. doi:10.1016/j.jclepro.2019.117957 es_ES
dc.description.references Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163-176. doi:10.1016/j.ijpe.2015.01.002 es_ES
dc.description.references Cuadrado, J., Zubizarreta, M., Rojí, E., Larrauri, M., & Álvarez, I. (2016). Sustainability assessment methodology for industrial buildings: three case studies. Civil Engineering and Environmental Systems, 33(2), 106-124. doi:10.1080/10286608.2016.1148143 es_ES
dc.description.references De la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770. doi:10.1016/j.jclepro.2015.07.002 es_ES
dc.description.references Dowsett, R., Green, M., Sexton, M., & Harty, C. (2019). Projecting at the project level: MMC supply chain integration roadmap for small housebuilders. Construction Innovation, 19(2), 193-211. doi:10.1108/ci-07-2017-0059 es_ES
dc.description.references Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental performance analysis of residential buildings in Brazil using life cycle assessment (LCA). Construction and Building Materials, 169, 748-761. doi:10.1016/j.conbuildmat.2018.02.045 es_ES
dc.description.references García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references Ilangkumaran, M., Karthikeyan, M., Ramachandran, T., Boopathiraja, M., & Kirubakaran, B. (2015). Risk analysis and warning rate of hot environment for foundry industry using hybrid MCDM technique. Safety Science, 72, 133-143. doi:10.1016/j.ssci.2014.08.011 es_ES
dc.description.references Janjua, S., Sarker, P., & Biswas, W. (2019). Impact of Service Life on the Environmental Performance of Buildings. Buildings, 9(1), 9. doi:10.3390/buildings9010009 es_ES
dc.description.references Josa, A., Aguado, A., Cardim, A., & Byars, E. (2007). Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cement and Concrete Research, 37(5), 781-788. doi:10.1016/j.cemconres.2007.02.004 es_ES
dc.description.references Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291 es_ES
dc.description.references Keeney, R. L., Raiffa, H., & Rajala, D. W. (1979). Decisions with Multiple Objectives: Preferences and Value Trade-Offs. IEEE Transactions on Systems, Man, and Cybernetics, 9(7), 403-403. doi:10.1109/tsmc.1979.4310245 es_ES
dc.description.references Liou, J. J. H., & Tzeng, G.-H. (2012). COMMENTS ON «MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW». Technological and Economic Development of Economy, 18(4), 672-695. doi:10.3846/20294913.2012.753489 es_ES
dc.description.references Liu, S., Wang, J., & Wu, W. (2017). To buy or not to buy: household risk hedging of housing costs. Accounting & Finance, 57(5), 1417-1445. doi:10.1111/acfi.12333 es_ES
dc.description.references Marjaba, G. E., & Chidiac, S. E. (2016). Sustainability and resiliency metrics for buildings – Critical review. Building and Environment, 101, 116-125. doi:10.1016/j.buildenv.2016.03.002 es_ES
dc.description.references Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2019). A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Advances in Civil Engineering, 2019, 1-16. doi:10.1155/2019/6134803 es_ES
dc.description.references Pardo-Bosch, F., & Aguado, A. (2014). Investment priorities for the management of hydraulic structures. Structure and Infrastructure Engineering, 11(10), 1338-1351. doi:10.1080/15732479.2014.964267 es_ES
dc.description.references Paya-Zaforteza, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693-704. doi:10.1007/s11012-010-9285-0 es_ES
dc.description.references Pellicer, E., Sierra, L. A., & Yepes, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113, 884-896. doi:10.1016/j.jclepro.2015.11.010 es_ES
dc.description.references Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 es_ES
dc.description.references Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49-58. doi:10.1016/j.buildenv.2012.01.007 es_ES
dc.description.references Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882-893. doi:10.1016/j.conbuildmat.2013.09.009 es_ES
dc.description.references Pons, O., de la Fuente, A., & Aguado, A. (2016). The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability, 8(5), 460. doi:10.3390/su8050460 es_ES
dc.description.references Pujadas, P., Cavalaro, S. H. P., & Aguado, A. (2018). Mives multicriteria assessment of urban-pavement conditions: application to a case study in Barcelona. Road Materials and Pavement Design, 20(8), 1827-1843. doi:10.1080/14680629.2018.1474788 es_ES
dc.description.references Queipo, J., Navarro, J. M., Izquierdo, M., Del Águila, A., Guinea, D., Villamor, M., … Neila, J. (2009). Proyecto de investigación INVISO: industrialización de viviendas sostenibles. Informes de la Construcción, 61(513), 73-86. doi:10.3989/ic.09.001 es_ES
dc.description.references San-José Lombera, J.-T., & Cuadrado Rojo, J. (2010). Industrial building design stage based on a system approach to their environmental sustainability. Construction and Building Materials, 24(4), 438-447. doi:10.1016/j.conbuildmat.2009.10.019 es_ES
dc.description.references Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022 es_ES
dc.description.references Stender, M., & Walter, A. (2018). The role of social sustainability in building assessment. Building Research & Information, 47(5), 598-610. doi:10.1080/09613218.2018.1468057 es_ES
dc.description.references Tabner, I. T. (2016). Buying versus renting – Determinants of the net present value of home ownership for individual households. International Review of Financial Analysis, 48, 233-246. doi:10.1016/j.irfa.2016.10.004 es_ES
dc.description.references Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability, 6(9), 5512-5534. doi:10.3390/su6095512 es_ES
dc.description.references Yepes, V., Pellicer, E., & Ortega, A. J. (2012). Designing a Benchmark Indicator for Managerial Competences in Construction at the Graduate Level. Journal of Professional Issues in Engineering Education and Practice, 138(1), 48-54. doi:10.1061/(asce)ei.1943-5541.0000075 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem