Mostrar el registro sencillo del ítem
dc.contributor.advisor | Casino Ferrando, Patricia | es_ES |
dc.contributor.advisor | Marina Moreno, Alberto | es_ES |
dc.contributor.author | Mideros Mora, Cristina | es_ES |
dc.date.accessioned | 2021-02-19T13:08:56Z | |
dc.date.available | 2021-02-19T13:08:56Z | |
dc.date.created | 2021-01-15 | |
dc.date.issued | 2021-02-19 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161920 | |
dc.description.abstract | [ES] El contexto de esta Tesis se enmarca en los sistemas de dos componentes (TCS) para comprender el mecanismo de transducción de la señal. Se analizó la especificidad en el reconocimiento de los TCS abarcando estudios a nivel funcional, estructural y evolutivo. Primero se utilizó el sistema HK853-RR468, que al estar previamente caracterizado nos permitió analizar específicamente las regiones de reconocimiento (HK-RR) correspondientes a los Lß3α3 y Lß4α4 de RR468 mutando residuos que determinaran la influencia en la transferencia del grupo fosfato. Los mutantes se caracterizaron de manera bioquímica y se hicieron aproximaciones estructurales pudiendo asignar la reacción de fosfotransferencia a una estructura formada por un complejo entre HK853 y RR468 mutante. Esta estructura nos permitió observar el carácter disociativo de dicha reacción que ha sido descrito previamente y la nula participación del dominio CA. Al mismo tiempo, se analizó la influencia del pH en los residuos catalíticos de la HK y el RR (His y Asp), utilizando un rango de pH de 5 a 8. Los ensayos bioquímicos generados en este rango nos mostraron como la His catalítica perdía su carácter nucleofílico cuando el pH se acercaba y disminuía de 6. Esto se relaciona con el pKa del anillo de imidazol presente en el residuo de His, que se se encuentra en torno a 6 y la pérdida de protonación. También se cristalizó el complejo HK-RR a diferentes pHs donde observamos que la His adquiría un rotámero gauche- que se asignaba a un estado inactivo o de reposo. Por otra parte, se analizó la influencia de la mutación G63V en el RR OmpR, que fue descrita como una mutación relacionada con la resistencia al antibiótico ertapenem. Para esto se generaron mutantes en OmpR en la posición G63, tanto en el dominio REC aislado como en la proteína completa. Los estudios bioquímicos de estas mutaciones demostraron como la mutación en esta posición disminuía la capacidad del RR para fosforilarse e incluso a dimerizar. Esto afectaba a la afinidad de este RR para interaccionar con su ADN correspondiente, las cajas ompF y ompC. Estos efectos se lograron evidenciar con la estructura de OmpRRECG63V, donde se observó como la mutación generaba un cambio conformacional al reducir el tamaño del Lßα3 y generaba un bolsillo hidrofóbico donde quedaba atrapada la cadena lateral de la Val. Finalmente se analizó el aspecto evolutivo de la señalización, para lo que se buscaron organismos endosimbiontes que presentaran una HK y uno o varios RRs. Estas características nos sugerían que la menor presión selectiva nos iba a permitir encontrar organismos con TCSs menos evolucionados cuya especificidad se haya visto reducida. Se analizaron los sistemas de Chlamydia trachomatis, Chlamydia psittaci, Simkania negevensis y Methanobrevibacter sp. Abm4. Solo pudo evidenciarse reacción de fosfotransferencia en el sistema perteneciente a Methanobrevibacter, el cual presenta una HK y 4 RRs. Sin embargo, esta fosfotransferencia presentaba una eficiencia diferenciada, siendo más rápida en RRMet572 y RRMet589-1 mientras que era nula en RRMet589-2. Por su parte las HKs de C. trachomatis y S. negevensis, fueron capaces de fosfotransferir, de manera no selectiva, a RR468, probablemente debido a la alta similitud que presenta la hélice α1 de las HKs con HK853. La aproximación estructural de estos sistemas permitió obtener las estructuras de los RRsMet589-1 y RRMet572, ambos en estado no fosforilado. Las dos estructuras presentaron grandes diferencias conformacionales a partir del Lßα4. Esto sugiere que sus mecanismos de reconocimiento con HKMet y de regulación son diferentes lo que apoya la selectividad diferenciada entre los RRs de este sistema. | es_ES |
dc.description.abstract | [CA] Esta Tesi s'emmarca en l'estudi dels sistemes de dos components (TCS) amb la finalitat d'entendre el seu mecanisme de transducció de senyal basat en l'especificitat de reconeixement a nivell funcional, estructural i evolutiu. Utilitzant el TCS HK853-RR468, analitzarem les regions Lß3α3 y Lß4α4 del regulador de la resposta (RR) RR468, que prèviament s'havien mostrat importants en el reconeixement, generant mutants i determinant la influència en la transferència del grup fosforil. Els mutants foren caracteritzats bioquímicament, observant que afectaven a una reacció específica i permetent-nos captar la reacció de fosfotransferència en una estructura formada per un complex entre HK853 i RR468 mutant. Aquesta estructura va mostrar el caràcter dissociatiu d'aquesta reacció i la nul·la participació del domini CA de la HK. Al mateix tems, s'analitzà l'efecte del pH sobre la transducció del senyal utilitzant els TCS K853-RR468 i EnvZ-OmpR. Els assajos bioquímics generats dins del rang de pH entre 5 i 8 ens mostraren com la His de la HK catalítica perdia el seu caràcter nucleofílic quan el pH s'aproximava i disminuïa de 6, valor del pKa de l'anell d'imidazole de la cadena lateral del residu d'His, indicant que aquesta disminució en l'activitat es correlacionava amb el canvi en la protonació de l'anell. Un exhaustiu estudi estructural del complex HK853-RR468 a diferents pHs mostrà que la His catalítica sempre adquiria un rotàmer gauche- independentment del valor del pH, invalidant el model que proposava que el pH regulava l'activitat de les HKs de la família HisKA induint un canvi en el rotàmer de la His catalítica. D'altra banda, s'analitzà la influència de la mutació G63V en el RR OmpR, que fou descrita com una mutació relacionada amb la resistència a l'antibiòtic ertapenem. Amb aquesta finalitat, es generaren mutants a OmpR a la posició G63 tant al domini REC aïllat com a la proteïna completa. Els estudis bioquímics demostraren com la mutació en aquesta posició disminuïa la capacitat de OmpR per fosforilar-se i per dimeritzar, afectant a la capacitat d'interaccionar amb les seqüències d'ADN palindròmiques diana, corresponents a les caixes ompF i ompC. Aquests efectes es visualitzaren a nivell molecular al resoldre l'estructura del mutant G63V d'OmpRREC, on s'observava com la mutació induïa un canvi conformacional al reduir la mida del Lßα3 generant una butxaca hidrofòbica degut a la presència de la nova Val en posició 63. Aquests canvis es transmeten a la resta de l'estructura d'OmpR produint canvis en Lßα4 i α4 que impedeixen la formació d'una superfície de dimerització competent i impedint la seua interacció amb l'ADN. Finalment, s'analitzà l'aspecte evolutiu de l'especificitat HK-RR. Buscaren organismes endosimbionts que presentaren TCS aïllats consistent en una HK i un o diversos RRs, suggerint que la menor pressió selectiva permetria trobar TCS menys evolucionats, on l'especificitat s'haguera vist reduïda. S'analitzaren HKs i RRs presents en Chlamydia trachomatis, Chlamydia psittaci, Simkania negevensis i Methanobrevibacter sp. Abm4. La reacció de fosfotransferència es va detectar en Methanobrevibacter, que presenta una sola HK i 4 RRs. Aquesta HK mostrà eficiència diferenciada per a la reacció de fosfotransferència, presentant major velocitat per als RRs RRMet572, RRMet589-1 i nul·la per a RRMet589-2. Per la seua banda, les HKs de C. trachomatis i S. negevensis, foren capaces de transferir, de manera no selectiva, a RR468 de Thermotoga maritima, probablement degut a l'alta similitud que presenta l'hèlix α1 de les HKs amb HK853. L'aproximació estructural d'aquests sistemes ens va permetre resoldre les estructures dels RRsMet589-1 i RRMet572 en estat no fosforilat. Les dues estructures presentaren grans diferències conformacionals a partir del Lßα4, els que ens suggereix que els seus mecanismes de reconeixement amb HKMet i de regulació són diferents, cosa que suporta la selectivitat diferenciada entre els RRs d’aquest sistema. | es_ES |
dc.description.abstract | [EN] The context of the Thesis is framed in the two component systems (TCS) to understand the signal transduction mechanism. The specificity in the recognition of TCS was analyzed covering studies at the functional, structural, and evolutionary level. First, the previously characterized HK853-RR468 was used, this allowed us to analyze specific recognition regions corresponding to Lß3α3 and Lß4α4 of RR468 and induce mutations in these regions and understand the recognition between HK and RR and determine the phosphate group transfer's influence. The mutants were characterized biochemically, and structural approximations were prepared, thus assigning the phosphotransfer reaction in a formed structure by an HK8536 and a mutant RR468 complex. This structure allowed us to observe the dissociative character of this reaction that has been previously described and the null participation of the CA domain. Simultaneously, the influence of pH on the catalytic residues of HK and RR (His and Asp) was analyzed, using a pH range of 5 to 8. The biochemical assays generated in this range showed how HK's catalytic His lost the nucleophilic characteristic when pH reached six or below. This is related to the pKa of the imidazole ring present in the His residue that if found around 6 and the loss of protonation. The HK853-RR468 complex was also crystallized at different pHs where we observed that His acquired a gauche- rotamer that was assigned an inactive or resting state. In addition, the influence of mutation G63V in the RR OmpR was analyzed. This mutation was associated with resistance to the antibiotic ertapenem in E. coli. For this, mutants in OmpR were generated in position G63 in both the isolated REC domain and in the whole protein. Biochemical studies of this mutations showed how the mutation in this position reduced the capacity of RR to phosphorylate and even to form a dimer. This affected the affinity of the RR to interact with it's corresponding DNA, the boxes ompF and ompR. These effects were shown with the structure of the REC domain of the OmpR protein mutant G63V. This mutation generated a conformational change by reducing the Lßα3 and generating a hydrophobic pocket that trapped Val's lateral chain. Finally, the evolutive aspect of signaling was analyzed. For this, endosymbiotic organisms that had one HK or many RRs were identified. These characteristics suggested that lower selective pressure would allow us to find organisms with TCSs that showed lower KH-RR specificity. The systems of Chlamydia trachomatis, Chlamydia psittaci, Simkania negevensis, and Methanobrevibacter sp. Abm4 were analyzed. The phosphotransference reaction was only evident in the the Methanobrevigbacter system. This system presents only one KH and four RRs. This HK shows differentiated efficiency in the phosphotranference. It has a higher speed in RRMet572, RRMet589-1 and it is null in RRMet589-2. On the other hand, the HKs of C. trachomatis y S. negevensis were able to transfer in a nonselective manner the RR468 of T. maritima. This is due to the similarity between the α1 helix of the HKs with HK853. The structural approach of there systems allowed us to obtain the structure of RRMet589-1 y RRMet572, both in a non-phosphorylated state. The two structures presented large conformational differences from Lßα4. This suggests that the recognition mechanisms with KHMet and regulation are different. This supports differentiated selectivity between the RRs in this system. | es_ES |
dc.format.extent | 221 | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Response regulator proteins | es_ES |
dc.subject | Histidine kinases | es_ES |
dc.subject | Two-component regulatory system | es_ES |
dc.subject | Response regulator | es_ES |
dc.subject | Phosphorylation | es_ES |
dc.subject | Molecular biology | es_ES |
dc.subject | Biología molecular | es_ES |
dc.subject | Regulador de la respuesta | es_ES |
dc.subject | Fosforilación | es_ES |
dc.subject | Sistemas de dos componentes | es_ES |
dc.subject | Histidinas Quinasas | es_ES |
dc.subject | Fosfotransferencia | es_ES |
dc.title | Bases moleculares de la especificidad en el mecanismo de transducción de señal en los sistemas de dos componentes bacterianos | es_ES |
dc.type | Tesis doctoral | es_ES |
dc.identifier.doi | 10.4995/Thesis/10251/161920 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Mideros Mora, C. (2021). Bases moleculares de la especificidad en el mecanismo de transducción de señal en los sistemas de dos componentes bacterianos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161920 | es_ES |
dc.description.accrualMethod | TESIS | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.pasarela | TESIS\11156 | es_ES |