- -

Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Naranjo-Delgado, Diana María es_ES
dc.contributor.author Segrelles Quilis, José Damián es_ES
dc.date.accessioned 2021-02-20T04:31:09Z
dc.date.available 2021-02-20T04:31:09Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161978
dc.description.abstract [EN] Cloud computing instruction requires hands-on experience with a myriad of distributed computing services from a public cloud provider. Tracking the progress of the students, especially for online courses, requires one to automatically gather evidence and produce learning analytics in order to further determine the behavior and performance of students. With this aim, this paper describes the experience from an online course in cloud computing with Amazon Web Services on the creation of an open-source data processing tool to systematically obtain learning analytics related to the hands-on activities carried out throughout the course. These data, combined with the data obtained from the learning management system, have allowed the better characterization of the behavior of students in the course. Insights from a population of more than 420 online students through three academic years have been assessed, the dataset has been released for increased reproducibility. The results corroborate that course length has an impact on online students dropout. In addition, a gender analysis pointed out that there are no statistically significant differences in the final marks between genders, but women show an increased degree of commitment with the activities planned in the course. es_ES
dc.description.sponsorship This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad through grant number TIN2016-79951-R (BigCLOE)", the "Vicerrectorado de Estudios, Calidad y Acreditacion" of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29 and PIME/19-20/166, and by the Conselleria d'Innovacio, Universitat, Ciencia i Societat Digital for the project "CloudSTEM" with reference number AICO/2019/313. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Learning analytics es_ES
dc.subject Cloud computing es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10249148 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV/PIME 2018-2019/B29/ES/Comunidades de Aprendizaje como servicios en la nube para el desarrollo y evaluación automática de Competencias Transversales y Objetivos Formativos específicos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV/PIME 2019-2020/B-19-20%2F166/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F313/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Moltó, G.; Naranjo-Delgado, DM.; Segrelles Quilis, JD. (2020). Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS. Applied Sciences. 10(24):1-13. https://doi.org/10.3390/app10249148 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10249148 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\427733 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Motiwalla, L., Deokar, A. V., Sarnikar, S., & Dimoka, A. (2019). Leveraging Data Analytics for Behavioral Research. Information Systems Frontiers, 21(4), 735-742. doi:10.1007/s10796-019-09928-8 es_ES
dc.description.references Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330661 es_ES
dc.description.references Blikstein, P. (2013). Multimodal learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge - LAK ’13. doi:10.1145/2460296.2460316 es_ES
dc.description.references Hewson, E. R. F. (2018). Students’ Emotional Engagement, Motivation and Behaviour Over the Life of an Online Course: Reflections on Two Market Research Case Studies. Journal of Interactive Media in Education, 2018(1). doi:10.5334/jime.472 es_ES
dc.description.references Kahan, T., Soffer, T., & Nachmias, R. (2017). Types of Participant Behavior in a Massive Open Online Course. The International Review of Research in Open and Distributed Learning, 18(6). doi:10.19173/irrodl.v18i6.3087 es_ES
dc.description.references Cross, S., & Whitelock, D. (2016). Similarity and difference in fee-paying and no-fee learner expectations, interaction and reaction to learning in a massive open online course. Interactive Learning Environments, 25(4), 439-451. doi:10.1080/10494820.2016.1138312 es_ES
dc.description.references Charleer, S., Klerkx, J., & Duval, E. (2014). Learning Dashboards. Journal of Learning Analytics, 1(3), 199-202. doi:10.18608/jla.2014.13.22 es_ES
dc.description.references Worsley, M. (2012). Multimodal learning analytics. Proceedings of the 14th ACM international conference on Multimodal interaction - ICMI ’12. doi:10.1145/2388676.2388755 es_ES
dc.description.references Spikol, D., Prieto, L. P., Rodríguez-Triana, M. J., Worsley, M., Ochoa, X., Cukurova, M., … Ringtved, U. L. (2017). Current and future multimodal learning analytics data challenges. Proceedings of the Seventh International Learning Analytics & Knowledge Conference. doi:10.1145/3027385.3029437 es_ES
dc.description.references Ochoa, X., Worsley, M., Weibel, N., & Oviatt, S. (2016). Multimodal learning analytics data challenges. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16. doi:10.1145/2883851.2883913 es_ES
dc.description.references Aguilar, J., Sánchez, M., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., & Chamba-Eras, L. (2017). Learning analytics tasks as services in smart classrooms. Universal Access in the Information Society, 17(4), 693-709. doi:10.1007/s10209-017-0525-0 es_ES
dc.description.references Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. doi:10.1080/10494820.2016.1278391 es_ES
dc.description.references Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): a reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. doi:10.1111/jcal.12135 es_ES
dc.description.references Ruiperez-Valiente, J. A., Munoz-Merino, P. J., Gascon-Pinedo, J. A., & Kloos, C. D. (2017). Scaling to Massiveness With ANALYSE: A Learning Analytics Tool for Open edX. IEEE Transactions on Human-Machine Systems, 47(6), 909-914. doi:10.1109/thms.2016.2630420 es_ES
dc.description.references Er, E., Gómez-Sánchez, E., Dimitriadis, Y., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., & Álvarez-Álvarez, S. (2019). Aligning learning design and learning analytics through instructor involvement: a MOOC case study. Interactive Learning Environments, 27(5-6), 685-698. doi:10.1080/10494820.2019.1610455 es_ES
dc.description.references Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516 es_ES
dc.description.references Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92, 578-588. doi:10.1016/j.chb.2018.07.002 es_ES
dc.description.references Klašnja-Milićević, A., Ivanović, M., & Budimac, Z. (2017). Data science in education: Big data and learning analytics. Computer Applications in Engineering Education, 25(6), 1066-1078. doi:10.1002/cae.21844 es_ES
dc.description.references Logglyhttps://www.loggly.com/ es_ES
dc.description.references Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041 es_ES
dc.description.references Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5 es_ES
dc.description.references AWS CloudTrailhttps://aws.amazon.com/cloudtrail/ es_ES
dc.description.references Amazon Simple Storage Service (Amazon S3)http://aws.amazon.com/s3/ es_ES
dc.description.references Naranjo, D. M., Prieto, J. R., Moltó, G., & Calatrava, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors, 19(13), 2952. doi:10.3390/s19132952 es_ES
dc.description.references Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., … Suter, P. (2017). Serverless Computing: Current Trends and Open Problems. Research Advances in Cloud Computing, 1-20. doi:10.1007/978-981-10-5026-8_1 es_ES
dc.description.references Zimmerman, D. W. (1987). Comparative Power of StudentTTest and Mann-WhitneyUTest for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 55(3), 171-174. doi:10.1080/00220973.1987.10806451 es_ES
dc.description.references Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441 es_ES
dc.description.references Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. doi:10.1037/a0036620 es_ES
dc.description.references Ellemers, N., Heuvel, H., Gilder, D., Maass, A., & Bonvini, A. (2004). The underrepresentation of women in science: Differential commitment or the queen bee syndrome? British Journal of Social Psychology, 43(3), 315-338. doi:10.1348/0144666042037999 es_ES
dc.description.references Sheard, M. (2009). Hardiness commitment, gender, and age differentiate university academic performance. British Journal of Educational Psychology, 79(1), 189-204. doi:10.1348/000709908x304406 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem