Mostrar el registro sencillo del ítem
dc.contributor.author | Moltó, Germán | es_ES |
dc.contributor.author | Naranjo-Delgado, Diana María | es_ES |
dc.contributor.author | Segrelles Quilis, José Damián | es_ES |
dc.date.accessioned | 2021-02-20T04:31:09Z | |
dc.date.available | 2021-02-20T04:31:09Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161978 | |
dc.description.abstract | [EN] Cloud computing instruction requires hands-on experience with a myriad of distributed computing services from a public cloud provider. Tracking the progress of the students, especially for online courses, requires one to automatically gather evidence and produce learning analytics in order to further determine the behavior and performance of students. With this aim, this paper describes the experience from an online course in cloud computing with Amazon Web Services on the creation of an open-source data processing tool to systematically obtain learning analytics related to the hands-on activities carried out throughout the course. These data, combined with the data obtained from the learning management system, have allowed the better characterization of the behavior of students in the course. Insights from a population of more than 420 online students through three academic years have been assessed, the dataset has been released for increased reproducibility. The results corroborate that course length has an impact on online students dropout. In addition, a gender analysis pointed out that there are no statistically significant differences in the final marks between genders, but women show an increased degree of commitment with the activities planned in the course. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad through grant number TIN2016-79951-R (BigCLOE)", the "Vicerrectorado de Estudios, Calidad y Acreditacion" of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29 and PIME/19-20/166, and by the Conselleria d'Innovacio, Universitat, Ciencia i Societat Digital for the project "CloudSTEM" with reference number AICO/2019/313. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Learning analytics | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10249148 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV/PIME 2018-2019/B29/ES/Comunidades de Aprendizaje como servicios en la nube para el desarrollo y evaluación automática de Competencias Transversales y Objetivos Formativos específicos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV/PIME 2019-2020/B-19-20%2F166/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F313/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Moltó, G.; Naranjo-Delgado, DM.; Segrelles Quilis, JD. (2020). Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS. Applied Sciences. 10(24):1-13. https://doi.org/10.3390/app10249148 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10249148 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\427733 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Motiwalla, L., Deokar, A. V., Sarnikar, S., & Dimoka, A. (2019). Leveraging Data Analytics for Behavioral Research. Information Systems Frontiers, 21(4), 735-742. doi:10.1007/s10796-019-09928-8 | es_ES |
dc.description.references | Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330661 | es_ES |
dc.description.references | Blikstein, P. (2013). Multimodal learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge - LAK ’13. doi:10.1145/2460296.2460316 | es_ES |
dc.description.references | Hewson, E. R. F. (2018). Students’ Emotional Engagement, Motivation and Behaviour Over the Life of an Online Course: Reflections on Two Market Research Case Studies. Journal of Interactive Media in Education, 2018(1). doi:10.5334/jime.472 | es_ES |
dc.description.references | Kahan, T., Soffer, T., & Nachmias, R. (2017). Types of Participant Behavior in a Massive Open Online Course. The International Review of Research in Open and Distributed Learning, 18(6). doi:10.19173/irrodl.v18i6.3087 | es_ES |
dc.description.references | Cross, S., & Whitelock, D. (2016). Similarity and difference in fee-paying and no-fee learner expectations, interaction and reaction to learning in a massive open online course. Interactive Learning Environments, 25(4), 439-451. doi:10.1080/10494820.2016.1138312 | es_ES |
dc.description.references | Charleer, S., Klerkx, J., & Duval, E. (2014). Learning Dashboards. Journal of Learning Analytics, 1(3), 199-202. doi:10.18608/jla.2014.13.22 | es_ES |
dc.description.references | Worsley, M. (2012). Multimodal learning analytics. Proceedings of the 14th ACM international conference on Multimodal interaction - ICMI ’12. doi:10.1145/2388676.2388755 | es_ES |
dc.description.references | Spikol, D., Prieto, L. P., Rodríguez-Triana, M. J., Worsley, M., Ochoa, X., Cukurova, M., … Ringtved, U. L. (2017). Current and future multimodal learning analytics data challenges. Proceedings of the Seventh International Learning Analytics & Knowledge Conference. doi:10.1145/3027385.3029437 | es_ES |
dc.description.references | Ochoa, X., Worsley, M., Weibel, N., & Oviatt, S. (2016). Multimodal learning analytics data challenges. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16. doi:10.1145/2883851.2883913 | es_ES |
dc.description.references | Aguilar, J., Sánchez, M., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., & Chamba-Eras, L. (2017). Learning analytics tasks as services in smart classrooms. Universal Access in the Information Society, 17(4), 693-709. doi:10.1007/s10209-017-0525-0 | es_ES |
dc.description.references | Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. doi:10.1080/10494820.2016.1278391 | es_ES |
dc.description.references | Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): a reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. doi:10.1111/jcal.12135 | es_ES |
dc.description.references | Ruiperez-Valiente, J. A., Munoz-Merino, P. J., Gascon-Pinedo, J. A., & Kloos, C. D. (2017). Scaling to Massiveness With ANALYSE: A Learning Analytics Tool for Open edX. IEEE Transactions on Human-Machine Systems, 47(6), 909-914. doi:10.1109/thms.2016.2630420 | es_ES |
dc.description.references | Er, E., Gómez-Sánchez, E., Dimitriadis, Y., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., & Álvarez-Álvarez, S. (2019). Aligning learning design and learning analytics through instructor involvement: a MOOC case study. Interactive Learning Environments, 27(5-6), 685-698. doi:10.1080/10494820.2019.1610455 | es_ES |
dc.description.references | Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516 | es_ES |
dc.description.references | Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92, 578-588. doi:10.1016/j.chb.2018.07.002 | es_ES |
dc.description.references | Klašnja-Milićević, A., Ivanović, M., & Budimac, Z. (2017). Data science in education: Big data and learning analytics. Computer Applications in Engineering Education, 25(6), 1066-1078. doi:10.1002/cae.21844 | es_ES |
dc.description.references | Logglyhttps://www.loggly.com/ | es_ES |
dc.description.references | Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041 | es_ES |
dc.description.references | Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5 | es_ES |
dc.description.references | AWS CloudTrailhttps://aws.amazon.com/cloudtrail/ | es_ES |
dc.description.references | Amazon Simple Storage Service (Amazon S3)http://aws.amazon.com/s3/ | es_ES |
dc.description.references | Naranjo, D. M., Prieto, J. R., Moltó, G., & Calatrava, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors, 19(13), 2952. doi:10.3390/s19132952 | es_ES |
dc.description.references | Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., … Suter, P. (2017). Serverless Computing: Current Trends and Open Problems. Research Advances in Cloud Computing, 1-20. doi:10.1007/978-981-10-5026-8_1 | es_ES |
dc.description.references | Zimmerman, D. W. (1987). Comparative Power of StudentTTest and Mann-WhitneyUTest for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 55(3), 171-174. doi:10.1080/00220973.1987.10806451 | es_ES |
dc.description.references | Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441 | es_ES |
dc.description.references | Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. doi:10.1037/a0036620 | es_ES |
dc.description.references | Ellemers, N., Heuvel, H., Gilder, D., Maass, A., & Bonvini, A. (2004). The underrepresentation of women in science: Differential commitment or the queen bee syndrome? British Journal of Social Psychology, 43(3), 315-338. doi:10.1348/0144666042037999 | es_ES |
dc.description.references | Sheard, M. (2009). Hardiness commitment, gender, and age differentiate university academic performance. British Journal of Educational Psychology, 79(1), 189-204. doi:10.1348/000709908x304406 | es_ES |