- -

Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils

Show simple item record

Files in this item

dc.contributor.author Verdeguer Sancho, Mercedes María es_ES
dc.contributor.author Castañeda, Luis Guillermo es_ES
dc.contributor.author Torres-Pagan, Natalia es_ES
dc.contributor.author Llorens Molina, Juan Antonio es_ES
dc.contributor.author Carrubba, Alessandra es_ES
dc.date.accessioned 2021-02-23T04:31:12Z
dc.date.available 2021-02-23T04:31:12Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162098
dc.description.abstract [EN] In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Menthapiperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 mu L/mL, with Fitoil used as emulsifier. In post-emergence, two ways of application were tested, irrigation and spraying. Several germination parameters (germination %, mean germination time, and synchrony of the germination process) were evaluated in pre-emergence tests, and the phytotoxicity level was assessed in post-emergence. In pre-emergence, all EOs significantly reduced seed germination as compared to the controls, ranking: T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita. The effectiveness of all EOs varied with the tested dose, always following the rank 2 mu L < 4 mu L < 8 mu L, with T. capitata EO showing full effectiveness even at the lowest dose. In post-emergence, T. capitata was the most effective EO, inducing a rather complete inhibition of plantlet growth at the highest two doses. These EOs demonstrated to have good potential for the formulation of natural herbicides. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Weed control es_ES
dc.subject Natural herbicides es_ES
dc.subject Essential oils es_ES
dc.subject Erigeron bonariensis es_ES
dc.subject Pre-emergence es_ES
dc.subject Post-emergence es_ES
dc.subject Seed germination es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules25030562 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Verdeguer Sancho, MM.; Castañeda, LG.; Torres-Pagan, N.; Llorens Molina, JA.; Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules. 25(3):1-22. https://doi.org/10.3390/molecules25030562 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules25030562 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 32012931 es_ES
dc.identifier.pmcid PMC7037304 es_ES
dc.relation.pasarela S\402740 es_ES
dc.description.references Hüter, O. F. (2010). Use of natural products in the crop protection industry. Phytochemistry Reviews, 10(2), 185-194. doi:10.1007/s11101-010-9168-y es_ES
dc.description.references Savary, S., Ficke, A., Aubertot, J.-N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519-537. doi:10.1007/s12571-012-0200-5 es_ES
dc.description.references OERKE, E.-C. (2005). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43. doi:10.1017/s0021859605005708 es_ES
dc.description.references Troyer, J. R. (2001). In the beginning: the multiple discovery of the first hormone herbicides. Weed Science, 49(2), 290-297. doi:10.1614/0043-1745(2001)049[0290:itbtmd]2.0.co;2 es_ES
dc.description.references Catalá, R., & Salinas, J. (2018). Tailoring crop nutrition to fight weeds. Proceedings of the National Academy of Sciences, 115(29), 7456-7458. doi:10.1073/pnas.1809311115 es_ES
dc.description.references Abbas, T., Zahir, Z. A., Naveed, M., & Kremer, R. J. (2018). Limitations of Existing Weed Control Practices Necessitate Development of Alternative Techniques Based on Biological Approaches. Advances in Agronomy, 239-280. doi:10.1016/bs.agron.2017.10.005 es_ES
dc.description.references http://www.fao.org/3/a-i3604e.pdf es_ES
dc.description.references Villa, F., Cappitelli, F., Cortesi, P., & Kunova, A. (2017). Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00654 es_ES
dc.description.references Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266 es_ES
dc.description.references Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2 es_ES
dc.description.references Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. doi:10.1016/j.bse.2009.06.003 es_ES
dc.description.references SINGH, H. P., BATISH, D. R., SETIA, N., & KOHLI, R. K. (2005). Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Annals of Applied Biology, 146(1), 89-94. doi:10.1111/j.1744-7348.2005.04018.x es_ES
dc.description.references Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728 es_ES
dc.description.references Frabboni, Tarantino, Petruzzi, & Disciglio. (2019). Bio-Herbicidal Effects of Oregano and Rosemary Essential Oils on Chamomile (Matricaria chamomilla L.) Crop in Organic Farming System. Agronomy, 9(9), 475. doi:10.3390/agronomy9090475 es_ES
dc.description.references Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694-24710. doi:10.1007/s11356-016-7794-7 es_ES
dc.description.references Trezzi, M. M., Balbinot Jr., A. A., Benin, G., Debastiani, F., Patel, F., & Miotto Jr., E. (2013). Competitive ability of soybean cultivars with horseweed (Conyza bonariensis). Planta Daninha, 31(3), 543-550. doi:10.1590/s0100-83582013000300006 es_ES
dc.description.references Ferreira, E. A., Galon, L., Aspiazú, I., Silva, A. A., Concenço, G., Silva, A. F., … Vargas, L. (2008). Glyphosate translocation in hairy fleabane (Conyza bonariensis) biotypes. Planta Daninha, 26(3), 637-643. doi:10.1590/s0100-83582008000300020 es_ES
dc.description.references WU, H., WALKER, S., ROLLIN, M. J., TAN, D. K. Y., ROBINSON, G., & WERTH, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7(3), 192-199. doi:10.1111/j.1445-6664.2007.00256.x es_ES
dc.description.references Wu, H., Walker, S., Robinson, G., & Coombes, N. (2010). Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 24(2), 102-107. doi:10.1614/wt-09-043.1 es_ES
dc.description.references Moreira, M. S., Nicolai, M., Carvalho, S. J. P., & Christoffoleti, P. J. (2007). Resistência de Conyza canadensis e C. bonariensis ao herbicida glyphosate. Planta Daninha, 25(1), 157-164. doi:10.1590/s0100-83582007000100017 es_ES
dc.description.references The International Survey of Herbicide Resistant Weedswww.weedscience.org. es_ES
dc.description.references Mahdavikia, F., & Saharkhiz, M. J. (2015). Phytotoxic activity of essential oil and water extract of peppermint (Mentha×piperita L. CV. Mitcham). Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 146-153. doi:10.1016/j.jarmap.2015.09.003 es_ES
dc.description.references Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010 es_ES
dc.description.references Fleisher, Z., & Fleisher, A. (2002). Volatiles ofCoridothymus capitatusChemotypes Growing in Israel: Aromatic Plants of the Holy Land and the Sinai. Part XV. Journal of Essential Oil Research, 14(2), 105-106. doi:10.1080/10412905.2002.9699785 es_ES
dc.description.references Hedhili, L., Romdhane, M., Abderrabba, A., Planche, H., & Cherif, I. (2001). Variability in essential oil composition of TunisianThymus capitatus (L.) Hoffmanns. et Link. Flavour and Fragrance Journal, 17(1), 26-28. doi:10.1002/ffj.1029 es_ES
dc.description.references Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15 es_ES
dc.description.references Ibáñez, M. D., & Blázquez, M. A. (2017). Herbicidal value of essential oils from oregano-like flavour species. Food and Agricultural Immunology, 28(6), 1168-1180. doi:10.1080/09540105.2017.1332010 es_ES
dc.description.references Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049 es_ES
dc.description.references Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054 es_ES
dc.description.references Vokou, D., Douvli, P., Blionis, G. J., & Halley, J. M. (2003). Journal of Chemical Ecology, 29(10), 2281-2301. doi:10.1023/a:1026274430898 es_ES
dc.description.references Martino, L. D., Mancini, E., Almeida, L. F. R. de, & Feo, V. D. (2010). The Antigerminative Activity of Twenty-Seven Monoterpenes. Molecules, 15(9), 6630-6637. doi:10.3390/molecules15096630 es_ES
dc.description.references Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1 es_ES
dc.description.references Soković, M. D., Glamočlija, J., Marin, P. D., Brkić, D. D., Vukojević, J., Jovanović, D., … Kataranovski, D. (2006). Antifungal Activity of the Essential Oil ofMentha. xpiperita. Pharmaceutical Biology, 44(7), 511-515. doi:10.1080/13880200600878700 es_ES
dc.description.references Desam, N. R., Al-Rajab, A. J., Sharma, M., Mylabathula, M. M., Gowkanapalli, R. R., & Albratty, M. (2019). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha×Piperita L. (peppermint) essential oils. Journal of King Saud University - Science, 31(4), 528-533. doi:10.1016/j.jksus.2017.07.013 es_ES
dc.description.references Synowiec, A., & Drozdek, E. (2016). Physicochemical and herbicidal properties of emulsions of essential oils against Avena fatua L. and Chenopodium album L. Journal of Plant Diseases and Protection, 123(2), 65-74. doi:10.1007/s41348-016-0012-5 es_ES
dc.description.references Maffei, M., Camusso, W., & Sacco, S. (2001). Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry, 58(5), 703-707. doi:10.1016/s0031-9422(01)00313-2 es_ES
dc.description.references SKRZYPEK, E., REPKA, P., STACHURSKA-SWAKON, A., BARABASZ-KRASNY, B., & MOZDZEN, K. (2015). Allelopathic Effect of Aqueous Extracts from the Leaves of Peppermint (Mentha piperita L.) on Selected Physiological Processes of Common Sunflower (Helianthus annuus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 335-342. doi:10.15835/nbha43210034 es_ES
dc.description.references Campiglia, E., Mancinelli, R., Cavalieri, A., & Caporali, F. (2007). Use of Essential Oils of Cinnamon, Lavender and Peppermint for Weed Control. Italian Journal of Agronomy, 2(2), 171. doi:10.4081/ija.2007.171 es_ES
dc.description.references Pappas, R. S., & Sheppard-Hanger, S. (2000). Essential Oil ofEucalyptus camaldulensisDehn. from South Florida: A High Cryptone/Low Cineole Eucalyptus. Journal of Essential Oil Research, 12(3), 383-384. doi:10.1080/10412905.2000.9699541 es_ES
dc.description.references Chalchat, J.-C., Kundakovic, T., & Gomnovic, M. S. (2001). Essential Oil from the Leaves ofEucalyptus camaldulensisDehn., Myrtaceae from Jerusalem. Journal of Essential Oil Research, 13(2), 105-107. doi:10.1080/10412905.2001.9699627 es_ES
dc.description.references Tsiri, D., Kretsi, O., Chinou, I. B., & Spyropoulos, C. G. (2003). Composition of fruit volatiles and annual changes in the volatiles of leaves ofEucalyptus camaldulensis Dehn. growing in Greece. Flavour and Fragrance Journal, 18(3), 244-247. doi:10.1002/ffj.1220 es_ES
dc.description.references Üstüner, T., Kordali, Ş., Usanmaz Bozhüyük, A., & Kesdek, M. (2018). Investigation of Pesticidal Activities of Essential Oil of Eucalyptus camaldulensis Dehnh. Records of Natural Products, 12(6), 557-568. doi:10.25135/rnp.64.18.02.088 es_ES
dc.description.references Fouad, R., Bousta, D., Lalami, A. E. O., Chahdi, F. O., Amri, I., Jamoussi, B., & Greche, H. (2015). Chemical Composition and Herbicidal Effects of Essential Oils ofCymbopogon citratus(DC) Stapf,Eucalyptus cladocalyx, Origanum vulgareL andArtemisia absinthiumL. cultivated in Morocco. Journal of Essential Oil Bearing Plants, 18(1), 112-123. doi:10.1080/0972060x.2014.901631 es_ES
dc.description.references Vernin, G. (1991). Volatile Constituents of the Essential Oil ofSantolina chamaecyparissusL. Journal of Essential Oil Research, 3(1), 49-53. doi:10.1080/10412905.1991.9697907 es_ES
dc.description.references Pérez-Alonso, M. J., & Velasco-Negueruela, A. (1992). Essential oil components ofSantolina chamaecyparissus L. Flavour and Fragrance Journal, 7(1), 37-41. doi:10.1002/ffj.2730070109 es_ES
dc.description.references Derbesy, M., Touche, J., & Zola, A. (1989). The Essential Oil ofSantolina chamaecyparissusL. Journal of Essential Oil Research, 1(6), 269-275. doi:10.1080/10412905.1989.9697797 es_ES
dc.description.references Grosso, C., Coelho, J. A., Urieta, J. S., Palavra, A. M. F., & Barroso, J. G. (2010). Herbicidal Activity of Volatiles from Coriander, Winter Savory, Cotton Lavender, and Thyme Isolated by Hydrodistillation and Supercritical Fluid Extraction. Journal of Agricultural and Food Chemistry, 58(20), 11007-11013. doi:10.1021/jf102378d es_ES
dc.description.references Garg, S. N., Gupta, D., Mehta, V. K., & Kumar, S. (2001). Volatile Constituents of the Essential Oil ofSantolina chamaecyparissusLinn, from the Southern Hills of India. Journal of Essential Oil Research, 13(4), 234-235. doi:10.1080/10412905.2001.9699679 es_ES
dc.description.references Ortiz de Elguea-Culebras, G., Sánchez-Vioque, R., Berruga, M. I., Herraiz-Peñalver, D., González-Coloma, A., Andrés, M. F., & Santana-Méridas, O. (2017). Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis , Lavandula × intermedia var. Super , and Santolina chamaecyparissus. Chemistry & Biodiversity, 15(1), e1700313. doi:10.1002/cbdv.201700313 es_ES
dc.description.references Ranal, M. A., & Santana, D. G. de. (2006). How and why to measure the germination process? Revista Brasileira de Botânica, 29(1), 1-11. doi:10.1590/s0100-84042006000100002 es_ES
dc.description.references Ranal, M. A., Santana, D. G. de, Ferreira, W. R., & Mendes-Rodrigues, C. (2009). Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica, 32(4), 849-855. doi:10.1590/s0100-84042009000400022 es_ES


This item appears in the following Collection(s)

Show simple item record