- -

Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Geiser, Jürgen es_ES
dc.contributor.author Hueso, Jose L. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.date.accessioned 2021-02-23T04:31:14Z
dc.date.available 2021-02-23T04:31:14Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162099
dc.description.abstract [EN] This article proposes adaptive iterative splitting methods to solve Multiphysics problems, which are related to convection-diffusion-reaction equations. The splitting techniques are based on iterative splitting approaches with adaptive ideas. Based on shifting the time-steps with additional adaptive time-ranges, we could embedded the adaptive techniques into the splitting approach. The numerical analysis of the adapted iterative splitting schemes is considered and we develop the underlying error estimates for the application of the adaptive schemes. The performance of the method with respect to the accuracy and the acceleration is evaluated in different numerical experiments. We test the benefits of the adaptive splitting approach on highly nonlinear Burgers' and Maxwell-Stefan diffusion equations. es_ES
dc.description.sponsorship This research was funded by German Academic Exchange Service grant number 91588469. We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität of Bochum, Germany and by Ministerio de Economía y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Time adaptive integration es_ES
dc.subject Adaptive iterative splitting es_ES
dc.subject Operator-splitting method es_ES
dc.subject Error control es_ES
dc.subject Convection-diffusion-reaction equations es_ES
dc.subject Iterative solver method es_ES
dc.subject Nonlinear equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8030302 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DAAD//91588469/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP%2F2009%2F122/ES/ANALISIS MATRICIAL, MATRICES NO NEGATIVAS Y APLICACIONES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Geiser, J.; Hueso, JL.; Martínez Molada, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics. 8(3):1-22. https://doi.org/10.3390/math8030302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8030302 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\406771 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Deutscher Akademischer Austauschdienst es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Auzinger, W., & Herfort, W. (2014). Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opuscula Mathematica, 34(2), 243. doi:10.7494/opmath.2014.34.2.243 es_ES
dc.description.references Auzinger, W., Koch, O., & Quell, M. (2016). Adaptive high-order splitting methods for systems of nonlinear evolution equations with periodic boundary conditions. Numerical Algorithms, 75(1), 261-283. doi:10.1007/s11075-016-0206-8 es_ES
dc.description.references Descombes, S., & Massot, M. (2004). Operator splitting for nonlinear reaction-diffusion systems with an entropic structure : singular perturbation and order reduction. Numerische Mathematik, 97(4), 667-698. doi:10.1007/s00211-003-0496-3 es_ES
dc.description.references Descombes, S., Dumont, T., Louvet, V., & Massot, M. (2007). On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients. International Journal of Computer Mathematics, 84(6), 749-765. doi:10.1080/00207160701458716 es_ES
dc.description.references McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053 es_ES
dc.description.references Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6 es_ES
dc.description.references Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041 es_ES
dc.description.references Jahnke, T., & Lubich, C. (2000). Bit Numerical Mathematics, 40(4), 735-744. doi:10.1023/a:1022396519656 es_ES
dc.description.references Nevanlinna, O. (1989). Remarks on Picard-Lindelöf iteration. BIT, 29(2), 328-346. doi:10.1007/bf01952687 es_ES
dc.description.references Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264 es_ES
dc.description.references DESCOMBES, S., DUARTE, M., DUMONT, T., LOUVET, V., & MASSOT, M. (2011). ADAPTIVE TIME SPLITTING METHOD FOR MULTI-SCALE EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS. Confluentes Mathematici, 03(03), 413-443. doi:10.1142/s1793744211000412 es_ES
dc.description.references Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028 es_ES
dc.description.references Dimov, I., Farago, I., Havasi, A., & Zlatev, Z. (2008). Different splitting techniques with application to air pollution models. International Journal of Environment and Pollution, 32(2), 174. doi:10.1504/ijep.2008.017102 es_ES
dc.description.references Karlsen, K. H., Lie, K.-A., Natvig, J. ., Nordhaug, H. ., & Dahle, H. . (2001). Operator Splitting Methods for Systems of Convection–Diffusion Equations: Nonlinear Error Mechanisms and Correction Strategies. Journal of Computational Physics, 173(2), 636-663. doi:10.1006/jcph.2001.6901 es_ES
dc.description.references Geiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568 es_ES
dc.description.references Geiser, J., & Wu, Y. H. (2015). Iterative solvers for the Maxwell–Stefan diffusion equations: Methods and applications in plasma and particle transport. Cogent Mathematics, 2(1), 1092913. doi:10.1080/23311835.2015.1092913 es_ES
dc.description.references Geiser, J., Hueso, J. L., & Martínez, E. (2017). New versions of iterative splitting methods for the momentum equation. Journal of Computational and Applied Mathematics, 309, 359-370. doi:10.1016/j.cam.2016.06.002 es_ES
dc.description.references Boudin, L., Grec, B., & Salvarani, F. (2012). A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 17(5), 1427-1440. doi:10.3934/dcdsb.2012.17.1427 es_ES
dc.description.references Duncan, J. B., & Toor, H. L. (1962). An experimental study of three component gas diffusion. AIChE Journal, 8(1), 38-41. doi:10.1002/aic.690080112 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem