Mostrar el registro sencillo del ítem
dc.contributor.author | Geiser, Jürgen | es_ES |
dc.contributor.author | Hueso, Jose L. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.date.accessioned | 2021-02-23T04:31:14Z | |
dc.date.available | 2021-02-23T04:31:14Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162099 | |
dc.description.abstract | [EN] This article proposes adaptive iterative splitting methods to solve Multiphysics problems, which are related to convection-diffusion-reaction equations. The splitting techniques are based on iterative splitting approaches with adaptive ideas. Based on shifting the time-steps with additional adaptive time-ranges, we could embedded the adaptive techniques into the splitting approach. The numerical analysis of the adapted iterative splitting schemes is considered and we develop the underlying error estimates for the application of the adaptive schemes. The performance of the method with respect to the accuracy and the acceleration is evaluated in different numerical experiments. We test the benefits of the adaptive splitting approach on highly nonlinear Burgers' and Maxwell-Stefan diffusion equations. | es_ES |
dc.description.sponsorship | This research was funded by German Academic Exchange Service grant number 91588469. We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität of Bochum, Germany and by Ministerio de Economía y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Time adaptive integration | es_ES |
dc.subject | Adaptive iterative splitting | es_ES |
dc.subject | Operator-splitting method | es_ES |
dc.subject | Error control | es_ES |
dc.subject | Convection-diffusion-reaction equations | es_ES |
dc.subject | Iterative solver method | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8030302 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DAAD//91588469/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP%2F2009%2F122/ES/ANALISIS MATRICIAL, MATRICES NO NEGATIVAS Y APLICACIONES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Geiser, J.; Hueso, JL.; Martínez Molada, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics. 8(3):1-22. https://doi.org/10.3390/math8030302 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8030302 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\406771 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Deutscher Akademischer Austauschdienst | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Auzinger, W., & Herfort, W. (2014). Local error structures and order conditions in terms of Lie elements for exponential splitting schemes. Opuscula Mathematica, 34(2), 243. doi:10.7494/opmath.2014.34.2.243 | es_ES |
dc.description.references | Auzinger, W., Koch, O., & Quell, M. (2016). Adaptive high-order splitting methods for systems of nonlinear evolution equations with periodic boundary conditions. Numerical Algorithms, 75(1), 261-283. doi:10.1007/s11075-016-0206-8 | es_ES |
dc.description.references | Descombes, S., & Massot, M. (2004). Operator splitting for nonlinear reaction-diffusion systems with an entropic structure : singular perturbation and order reduction. Numerische Mathematik, 97(4), 667-698. doi:10.1007/s00211-003-0496-3 | es_ES |
dc.description.references | Descombes, S., Dumont, T., Louvet, V., & Massot, M. (2007). On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients. International Journal of Computer Mathematics, 84(6), 749-765. doi:10.1080/00207160701458716 | es_ES |
dc.description.references | McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053 | es_ES |
dc.description.references | Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6 | es_ES |
dc.description.references | Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041 | es_ES |
dc.description.references | Jahnke, T., & Lubich, C. (2000). Bit Numerical Mathematics, 40(4), 735-744. doi:10.1023/a:1022396519656 | es_ES |
dc.description.references | Nevanlinna, O. (1989). Remarks on Picard-Lindelöf iteration. BIT, 29(2), 328-346. doi:10.1007/bf01952687 | es_ES |
dc.description.references | Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264 | es_ES |
dc.description.references | DESCOMBES, S., DUARTE, M., DUMONT, T., LOUVET, V., & MASSOT, M. (2011). ADAPTIVE TIME SPLITTING METHOD FOR MULTI-SCALE EVOLUTIONARY PARTIAL DIFFERENTIAL EQUATIONS. Confluentes Mathematici, 03(03), 413-443. doi:10.1142/s1793744211000412 | es_ES |
dc.description.references | Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028 | es_ES |
dc.description.references | Dimov, I., Farago, I., Havasi, A., & Zlatev, Z. (2008). Different splitting techniques with application to air pollution models. International Journal of Environment and Pollution, 32(2), 174. doi:10.1504/ijep.2008.017102 | es_ES |
dc.description.references | Karlsen, K. H., Lie, K.-A., Natvig, J. ., Nordhaug, H. ., & Dahle, H. . (2001). Operator Splitting Methods for Systems of Convection–Diffusion Equations: Nonlinear Error Mechanisms and Correction Strategies. Journal of Computational Physics, 173(2), 636-663. doi:10.1006/jcph.2001.6901 | es_ES |
dc.description.references | Geiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568 | es_ES |
dc.description.references | Geiser, J., & Wu, Y. H. (2015). Iterative solvers for the Maxwell–Stefan diffusion equations: Methods and applications in plasma and particle transport. Cogent Mathematics, 2(1), 1092913. doi:10.1080/23311835.2015.1092913 | es_ES |
dc.description.references | Geiser, J., Hueso, J. L., & Martínez, E. (2017). New versions of iterative splitting methods for the momentum equation. Journal of Computational and Applied Mathematics, 309, 359-370. doi:10.1016/j.cam.2016.06.002 | es_ES |
dc.description.references | Boudin, L., Grec, B., & Salvarani, F. (2012). A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 17(5), 1427-1440. doi:10.3934/dcdsb.2012.17.1427 | es_ES |
dc.description.references | Duncan, J. B., & Toor, H. L. (1962). An experimental study of three component gas diffusion. AIChE Journal, 8(1), 38-41. doi:10.1002/aic.690080112 | es_ES |