- -

Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Águila-León, Jesús es_ES
dc.contributor.author Chiñas-Palacios, Cristian es_ES
dc.contributor.author Vargas-Salgado Carlos es_ES
dc.contributor.author Hurtado-Perez, Elias es_ES
dc.contributor.author García, Edith Xio Mara es_ES
dc.date.accessioned 2021-02-23T04:31:25Z
dc.date.available 2021-02-23T04:31:25Z
dc.date.issued 2021-01-30 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162102
dc.description.abstract [EN] Power converters are electronic devices widely applied in industry, and in recent years, for renewable energy electronic systems, they can regulate voltage levels and actuate as interfaces, however, to do so, is needed a controller. Proportional-Integral-Derivative (PID) are applied to power converters comparing output voltage versus a reference voltage to reduce and anticipate error. Using PID controllers may be complicated since must be previously tuned prior to their use. Many methods for PID controllers tunning have been proposed, from classical to metaheuristic approaches. Between the metaheuristic approaches, bio-inspired algorithms are a feasible solution; Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are often used; however, they need many initial parameters to be specified, this can lead to local solutions, and not necessarily the global optimum. In recent years, new generation metaheuristic algorithms with fewer initial parameters had been proposed. The Grey Wolf Optimizer (GWO) algorithm is based on wolves¿ herds chasing habits. In this work, a comparison between PID controllers tunning using GWO, PSO, and GA algorithms for a Boost Converter is made. The converter is modeled by state-space equations, and then the optimization of the related PID controller is made using MATLAB/Simulink software. The algorithm¿s performance is evaluated using the Root Mean Squared Error (RMSE). Results show that the proposed GWO algorithm is a feasible solution for the PID controller tunning problem for power converters since its overall performance is better than the obtained by the PSO and GA. es_ES
dc.description.sponsorship The authors wish to thank the Institute of Energy Engineering of the Polytechnic University of Valencia, Spain, and the Department of Water and Energy Studies of the University of Guadalajara, Mexico, for all their support and collaboration. es_ES
dc.language Inglés es_ES
dc.publisher ASTES Journal es_ES
dc.relation.ispartof Advances in Science, Technology and Engineering Systems Journal es_ES
dc.rights Reconocimiento - Compartir igual (by-sa) es_ES
dc.subject PID tunning es_ES
dc.subject Grey Wolf optimizer es_ES
dc.subject Particle swarm optimization es_ES
dc.subject Genetic algorithm es_ES
dc.subject Boost converter es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.25046/aj060167 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Águila-León, J.; Chiñas-Palacios, C.; Vargas-Salgado Carlos; Hurtado-Perez, E.; García, EXM. (2021). Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller. Advances in Science, Technology and Engineering Systems Journal. 6(1):619-625. https://doi.org/10.25046/aj060167 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.25046/aj060167 es_ES
dc.description.upvformatpinicio 619 es_ES
dc.description.upvformatpfin 625 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2415-6698 es_ES
dc.relation.pasarela S\426795 es_ES
dc.description.references J. Aguila-Leon, C.D. Chinas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez, E.X.M. Garcia, "Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms," in 2020 IEEE Conference on Technologies for Sustainability, SusTech 2020, 2020, doi:10.1109/SusTech47890.2020.9150507. es_ES
dc.description.references H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronic Devices, 2013, doi:10.1017/CBO9781107415324.004. es_ES
dc.description.references G.A. Raiker, S.R. B, P.C. Ramamurthy, L. Umanand, S.G. Abines, S.G. Vasisht, "Solar PV interface to Grid-Tie Inverter with Current Referenced Boost Converter," in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), IEEE: 343-348, 2018, doi:10.1109/ICIINFS.2018.8721313. es_ES
dc.description.references S.E. Babaa, G. El Murr, F. Mohamed, S. Pamuri, "Overview of Boost Converters for Photovoltaic Systems," Journal of Power and Energy Engineering, 06(04), 16-31, 2018, doi:10.4236/jpee.2018.64002. es_ES
dc.description.references J. Berner, K. Soltesz, T. Hägglund, K.J. Åström, "An experimental comparison of PID autotuners," Control Engineering Practice, 73, 124-133, 2018, doi:10.1016/J.CONENGPRAC.2018.01.006. es_ES
dc.description.references K. Ogata, Modern Control Engineering, 5th ed., Prentice Hall, 2010. es_ES
dc.description.references K. Nisi, B. Nagaraj, A. Agalya, "Tuning of a PID controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry," International Journal of Machine Learning and Cybernetics, 10(8), 2015-2025, 2019, doi:10.1007/s13042-018-0831-8. es_ES
dc.description.references M.T. Özdemir, D. Öztürk, "Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control," Energies, 10(12), 2017, doi:10.3390/en10122134. es_ES
dc.description.references G.-Q. Zeng, X.-Q. Xie, M.-R. Chen, "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, 10(11), 1840, 2017, doi:10.3390/en10111840. es_ES
dc.description.references Y. Sawle, S.C. Gupta, A.K. Bohre, "Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique," Energy Procedia, 117, 690-698, 2017, doi:10.1016/j.egypro.2017.05.183. es_ES
dc.description.references S. Surender Reddy, C. Srinivasa Rathnam, "Optimal Power Flow using Glowworm Swarm Optimization," International Journal of Electrical Power & Energy Systems, 80, 128-139, 2016, doi:10.1016/J.IJEPES.2016.01.036. es_ES
dc.description.references C.Y. Acevedo-arenas, A. Correcher, C. Sánchez-díaz, E. Ariza, D. Alfonso-solar, C. Vargas-salgado, J.F. Petit-suárez, "MPC for optimal dispatch of an AC-linked hybrid PV / wind / biomass / H2 system incorporating demand response," Energy Conversion and Management, 186(February), 241-257, 2019, doi:10.1016/j.enconman.2019.02.044. es_ES
dc.description.references M. Çelebi, "Efficiency optimization of a conventional boost DC/DC converter," Electrical Engineering, 100(2), 803-809, 2018, doi:10.1007/s00202-017-0552-0. es_ES
dc.description.references Q.Y. Lu, W. Hu, L. Zheng, Y. Min, M. Li, X.P. Li, W.C. Ge, Z.M. Wang, "Integrated coordinated optimization control of automatic generation control and automatic voltage control in regional power grids," Energies, 5(10), 3817-3834, 2012, doi:10.3390/en5103817. es_ES
dc.description.references J. Aguila‐Leon, C. Chiñas‐Palacios, E.X.M. Garcia, C. Vargas‐Salgado, "A multimicrogrid energy management model implementing an evolutionary game‐theoretic approach," International Transactions on Electrical Energy Systems, 30(11), 2020, doi:10.1002/2050-7038.12617. es_ES
dc.description.references Ovat Friday Aje, Anyandi Adie Josephat, "The particle swarm optimization (PSO) algorithm application - A review," Global Journal of Engineering and Technology Advances, 3(3), 001-006, 2020, doi:10.30574/gjeta.2020.3.3.0033. es_ES
dc.description.references N.K. Jain, U. Nangia, J. Jain, A Review of Particle Swarm Optimization, Journal of The Institution of Engineers (India): Series B, 99(4), 407-411, 2018, doi:10.1007/s40031-018-0323-y. es_ES
dc.description.references B. Hekimoǧlu, S. Ekinci, S. Kaya, "Optimal PID Controller Design of DC-DC Buck Converter using Whale Optimization Algorithm," in 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018, Institute of Electrical and Electronics Engineers Inc., 2019, doi:10.1109/IDAP.2018.8620833. es_ES
dc.description.references S. Mirjalili, S.M. Mirjalili, A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, 69, 46-61, 2014, doi:10.1016/j.advengsoft.2013.12.007. es_ES
dc.description.references S.-X. Li, J.-S. Wang, "Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer," Mathematical Problems in Engineering, 2015, 1-9, 2015, doi:10.1155/2015/120975. es_ES
dc.description.references S. Yadav, S.K. Verma, S.K. Nagar, "Optimized PID Controller for Magnetic Levitation System," IFAC-PapersOnLine, 49(1), 778-782, 2016, doi:10.1016/J.IFACOL.2016.03.151. es_ES
dc.description.references R.H.G. Tan, L.Y.H. Hoo, "DC-DC converter modeling and simulation using state space approach," 2015 IEEE Conference on Energy Conversion (CENCON), (2), 42-47, 2015, doi:10.1109/CENCON.2015.7409511. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem