Mostrar el registro sencillo del ítem
dc.contributor.author | Águila-León, Jesús | es_ES |
dc.contributor.author | Chiñas-Palacios, Cristian | es_ES |
dc.contributor.author | Vargas-Salgado Carlos | es_ES |
dc.contributor.author | Hurtado-Perez, Elias | es_ES |
dc.contributor.author | García, Edith Xio Mara | es_ES |
dc.date.accessioned | 2021-02-23T04:31:25Z | |
dc.date.available | 2021-02-23T04:31:25Z | |
dc.date.issued | 2021-01-30 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162102 | |
dc.description.abstract | [EN] Power converters are electronic devices widely applied in industry, and in recent years, for renewable energy electronic systems, they can regulate voltage levels and actuate as interfaces, however, to do so, is needed a controller. Proportional-Integral-Derivative (PID) are applied to power converters comparing output voltage versus a reference voltage to reduce and anticipate error. Using PID controllers may be complicated since must be previously tuned prior to their use. Many methods for PID controllers tunning have been proposed, from classical to metaheuristic approaches. Between the metaheuristic approaches, bio-inspired algorithms are a feasible solution; Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are often used; however, they need many initial parameters to be specified, this can lead to local solutions, and not necessarily the global optimum. In recent years, new generation metaheuristic algorithms with fewer initial parameters had been proposed. The Grey Wolf Optimizer (GWO) algorithm is based on wolves¿ herds chasing habits. In this work, a comparison between PID controllers tunning using GWO, PSO, and GA algorithms for a Boost Converter is made. The converter is modeled by state-space equations, and then the optimization of the related PID controller is made using MATLAB/Simulink software. The algorithm¿s performance is evaluated using the Root Mean Squared Error (RMSE). Results show that the proposed GWO algorithm is a feasible solution for the PID controller tunning problem for power converters since its overall performance is better than the obtained by the PSO and GA. | es_ES |
dc.description.sponsorship | The authors wish to thank the Institute of Energy Engineering of the Polytechnic University of Valencia, Spain, and the Department of Water and Energy Studies of the University of Guadalajara, Mexico, for all their support and collaboration. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | ASTES Journal | es_ES |
dc.relation.ispartof | Advances in Science, Technology and Engineering Systems Journal | es_ES |
dc.rights | Reconocimiento - Compartir igual (by-sa) | es_ES |
dc.subject | PID tunning | es_ES |
dc.subject | Grey Wolf optimizer | es_ES |
dc.subject | Particle swarm optimization | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject | Boost converter | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.25046/aj060167 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Águila-León, J.; Chiñas-Palacios, C.; Vargas-Salgado Carlos; Hurtado-Perez, E.; García, EXM. (2021). Particle Swarm Optimization, Genetic Algorithm and Grey Wolf Optimizer Algorithms Performance Comparative for a DC-DC Boost Converter PID Controller. Advances in Science, Technology and Engineering Systems Journal. 6(1):619-625. https://doi.org/10.25046/aj060167 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.25046/aj060167 | es_ES |
dc.description.upvformatpinicio | 619 | es_ES |
dc.description.upvformatpfin | 625 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2415-6698 | es_ES |
dc.relation.pasarela | S\426795 | es_ES |
dc.description.references | J. Aguila-Leon, C.D. Chinas-Palacios, C. Vargas-Salgado, E. Hurtado-Perez, E.X.M. Garcia, "Optimal PID Parameters Tunning for a DC-DC Boost Converter: A Performance Comparative Using Grey Wolf Optimizer, Particle Swarm Optimization and Genetic Algorithms," in 2020 IEEE Conference on Technologies for Sustainability, SusTech 2020, 2020, doi:10.1109/SusTech47890.2020.9150507. | es_ES |
dc.description.references | H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronic Devices, 2013, doi:10.1017/CBO9781107415324.004. | es_ES |
dc.description.references | G.A. Raiker, S.R. B, P.C. Ramamurthy, L. Umanand, S.G. Abines, S.G. Vasisht, "Solar PV interface to Grid-Tie Inverter with Current Referenced Boost Converter," in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), IEEE: 343-348, 2018, doi:10.1109/ICIINFS.2018.8721313. | es_ES |
dc.description.references | S.E. Babaa, G. El Murr, F. Mohamed, S. Pamuri, "Overview of Boost Converters for Photovoltaic Systems," Journal of Power and Energy Engineering, 06(04), 16-31, 2018, doi:10.4236/jpee.2018.64002. | es_ES |
dc.description.references | J. Berner, K. Soltesz, T. Hägglund, K.J. Åström, "An experimental comparison of PID autotuners," Control Engineering Practice, 73, 124-133, 2018, doi:10.1016/J.CONENGPRAC.2018.01.006. | es_ES |
dc.description.references | K. Ogata, Modern Control Engineering, 5th ed., Prentice Hall, 2010. | es_ES |
dc.description.references | K. Nisi, B. Nagaraj, A. Agalya, "Tuning of a PID controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry," International Journal of Machine Learning and Cybernetics, 10(8), 2015-2025, 2019, doi:10.1007/s13042-018-0831-8. | es_ES |
dc.description.references | M.T. Özdemir, D. Öztürk, "Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control," Energies, 10(12), 2017, doi:10.3390/en10122134. | es_ES |
dc.description.references | G.-Q. Zeng, X.-Q. Xie, M.-R. Chen, "An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations," Energies, 10(11), 1840, 2017, doi:10.3390/en10111840. | es_ES |
dc.description.references | Y. Sawle, S.C. Gupta, A.K. Bohre, "Optimal sizing of standalone PV/Wind/Biomass hybrid energy system using GA and PSO optimization technique," Energy Procedia, 117, 690-698, 2017, doi:10.1016/j.egypro.2017.05.183. | es_ES |
dc.description.references | S. Surender Reddy, C. Srinivasa Rathnam, "Optimal Power Flow using Glowworm Swarm Optimization," International Journal of Electrical Power & Energy Systems, 80, 128-139, 2016, doi:10.1016/J.IJEPES.2016.01.036. | es_ES |
dc.description.references | C.Y. Acevedo-arenas, A. Correcher, C. Sánchez-díaz, E. Ariza, D. Alfonso-solar, C. Vargas-salgado, J.F. Petit-suárez, "MPC for optimal dispatch of an AC-linked hybrid PV / wind / biomass / H2 system incorporating demand response," Energy Conversion and Management, 186(February), 241-257, 2019, doi:10.1016/j.enconman.2019.02.044. | es_ES |
dc.description.references | M. Çelebi, "Efficiency optimization of a conventional boost DC/DC converter," Electrical Engineering, 100(2), 803-809, 2018, doi:10.1007/s00202-017-0552-0. | es_ES |
dc.description.references | Q.Y. Lu, W. Hu, L. Zheng, Y. Min, M. Li, X.P. Li, W.C. Ge, Z.M. Wang, "Integrated coordinated optimization control of automatic generation control and automatic voltage control in regional power grids," Energies, 5(10), 3817-3834, 2012, doi:10.3390/en5103817. | es_ES |
dc.description.references | J. Aguila‐Leon, C. Chiñas‐Palacios, E.X.M. Garcia, C. Vargas‐Salgado, "A multimicrogrid energy management model implementing an evolutionary game‐theoretic approach," International Transactions on Electrical Energy Systems, 30(11), 2020, doi:10.1002/2050-7038.12617. | es_ES |
dc.description.references | Ovat Friday Aje, Anyandi Adie Josephat, "The particle swarm optimization (PSO) algorithm application - A review," Global Journal of Engineering and Technology Advances, 3(3), 001-006, 2020, doi:10.30574/gjeta.2020.3.3.0033. | es_ES |
dc.description.references | N.K. Jain, U. Nangia, J. Jain, A Review of Particle Swarm Optimization, Journal of The Institution of Engineers (India): Series B, 99(4), 407-411, 2018, doi:10.1007/s40031-018-0323-y. | es_ES |
dc.description.references | B. Hekimoǧlu, S. Ekinci, S. Kaya, "Optimal PID Controller Design of DC-DC Buck Converter using Whale Optimization Algorithm," in 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018, Institute of Electrical and Electronics Engineers Inc., 2019, doi:10.1109/IDAP.2018.8620833. | es_ES |
dc.description.references | S. Mirjalili, S.M. Mirjalili, A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, 69, 46-61, 2014, doi:10.1016/j.advengsoft.2013.12.007. | es_ES |
dc.description.references | S.-X. Li, J.-S. Wang, "Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer," Mathematical Problems in Engineering, 2015, 1-9, 2015, doi:10.1155/2015/120975. | es_ES |
dc.description.references | S. Yadav, S.K. Verma, S.K. Nagar, "Optimized PID Controller for Magnetic Levitation System," IFAC-PapersOnLine, 49(1), 778-782, 2016, doi:10.1016/J.IFACOL.2016.03.151. | es_ES |
dc.description.references | R.H.G. Tan, L.Y.H. Hoo, "DC-DC converter modeling and simulation using state space approach," 2015 IEEE Conference on Energy Conversion (CENCON), (2), 42-47, 2015, doi:10.1109/CENCON.2015.7409511. | es_ES |