dc.contributor.author |
Reig-Mullor, Javier
|
es_ES |
dc.contributor.author |
Pla Santamaría, David
|
es_ES |
dc.contributor.author |
Garcia-Bernabeu, Ana
|
es_ES |
dc.date.accessioned |
2021-02-24T04:31:32Z |
|
dc.date.available |
2021-02-24T04:31:32Z |
|
dc.date.issued |
2020-11 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/162236 |
|
dc.description.abstract |
[EN] Fuzzy analytic hierarchy process (FAHP) methodologies have witnessed a growing development from the late 1980s until now, and countless FAHP based applications have been published in many fields including economics, finance, environment or engineering. In this context, the FAHP methodologies have been generally restricted to fuzzy numbers with linear type of membership functions (triangular numbers-TN-and trapezoidal numbers-TrN). This paper proposes an extended FAHP model (E-FAHP) where pairwise fuzzy comparison matrices are represented by a special type of fuzzy numbers referred to as (m,n)-trapezoidal numbers (TrN (m,n)) with nonlinear membership functions. It is then demonstrated that there are a significant number of FAHP approaches that can be reduced to the proposed E-FAHP structure. A comparative analysis of E-FAHP and Mikhailov's model is illustrated with a case study showing that E-FAHP includes linear and nonlinear fuzzy numbers. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Mathematics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
AHP |
es_ES |
dc.subject |
Fuzzy AHP |
es_ES |
dc.subject |
Fuzzy numbers |
es_ES |
dc.subject |
(m,n)-trapezoidal numbers |
es_ES |
dc.subject |
MCDM |
es_ES |
dc.subject.classification |
ECONOMIA FINANCIERA Y CONTABILIDAD |
es_ES |
dc.subject.classification |
ECONOMIA APLICADA |
es_ES |
dc.title |
Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/math8112014 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials |
es_ES |
dc.description.bibliographicCitation |
Reig-Mullor, J.; Pla Santamaría, D.; Garcia-Bernabeu, A. (2020). Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach. Mathematics. 8(11):1-14. https://doi.org/10.3390/math8112014 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/math8112014 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
14 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
11 |
es_ES |
dc.identifier.eissn |
2227-7390 |
es_ES |
dc.relation.pasarela |
S\421624 |
es_ES |
dc.description.references |
Chai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. doi:10.1016/j.eswa.2012.12.040 |
es_ES |
dc.description.references |
Tavana, M., Zareinejad, M., Di Caprio, D., & Kaviani, M. A. (2016). An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Applied Soft Computing, 40, 544-557. doi:10.1016/j.asoc.2015.12.005 |
es_ES |
dc.description.references |
Medasani, S., Kim, J., & Krishnapuram, R. (1998). An overview of membership function generation techniques for pattern recognition. International Journal of Approximate Reasoning, 19(3-4), 391-417. doi:10.1016/s0888-613x(98)10017-8 |
es_ES |
dc.description.references |
Medaglia, A. L., Fang, S.-C., Nuttle, H. L. W., & Wilson, J. R. (2002). An efficient and flexible mechanism for constructing membership functions. European Journal of Operational Research, 139(1), 84-95. doi:10.1016/s0377-2217(01)00157-6 |
es_ES |
dc.description.references |
Mikhailov, L. (2003). Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets and Systems, 134(3), 365-385. doi:10.1016/s0165-0114(02)00383-4 |
es_ES |
dc.description.references |
Appadoo, S. S. (2014). Possibilistic Fuzzy Net Present Value Model and Application. Mathematical Problems in Engineering, 2014, 1-11. doi:10.1155/2014/865968 |
es_ES |
dc.description.references |
Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33. doi:10.1016/j.asoc.2004.04.001 |
es_ES |
dc.description.references |
Hepu Deng. (1999). Multicriteria analysis with fuzzy pairwise comparison. FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315). doi:10.1109/fuzzy.1999.793038 |
es_ES |
dc.description.references |
Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. doi:10.1016/s0165-0114(83)80082-7 |
es_ES |
dc.description.references |
Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. doi:10.1016/0165-0114(85)90090-9 |
es_ES |
dc.description.references |
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. doi:10.1016/0377-2217(95)00300-2 |
es_ES |
dc.description.references |
Enea, M., & Piazza, T. (2004). Project Selection by Constrained Fuzzy AHP. Fuzzy Optimization and Decision Making, 3(1), 39-62. doi:10.1023/b:fodm.0000013071.63614.3d |
es_ES |
dc.description.references |
Krejčí, J., Pavlačka, O., & Talašová, J. (2016). A fuzzy extension of Analytic Hierarchy Process based on the constrained fuzzy arithmetic. Fuzzy Optimization and Decision Making, 16(1), 89-110. doi:10.1007/s10700-016-9241-0 |
es_ES |
dc.description.references |
Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. doi:10.1016/j.eswa.2007.08.041 |
es_ES |
dc.description.references |
Isaai, M. T., Kanani, A., Tootoonchi, M., & Afzali, H. R. (2011). Intelligent timetable evaluation using fuzzy AHP. Expert Systems with Applications, 38(4), 3718-3723. doi:10.1016/j.eswa.2010.09.030 |
es_ES |
dc.description.references |
Büyüközkan, G., & Güleryüz, S. (2016). A new integrated intuitionistic fuzzy group decision making approach for product development partner selection. Computers & Industrial Engineering, 102, 383-395. doi:10.1016/j.cie.2016.05.038 |
es_ES |
dc.description.references |
Zheng, G., Zhu, N., Tian, Z., Chen, Y., & Sun, B. (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety Science, 50(2), 228-239. doi:10.1016/j.ssci.2011.08.042 |
es_ES |
dc.description.references |
Calabrese, A., Costa, R., & Menichini, T. (2013). Using Fuzzy AHP to manage Intellectual Capital assets: An application to the ICT service industry. Expert Systems with Applications, 40(9), 3747-3755. doi:10.1016/j.eswa.2012.12.081 |
es_ES |
dc.description.references |
Ishizaka, A., & Nguyen, N. H. (2013). Calibrated fuzzy AHP for current bank account selection. Expert Systems with Applications, 40(9), 3775-3783. doi:10.1016/j.eswa.2012.12.089 |
es_ES |
dc.description.references |
Somsuk, N., & Laosirihongthong, T. (2014). A fuzzy AHP to prioritize enabling factors for strategic management of university business incubators: Resource-based view. Technological Forecasting and Social Change, 85, 198-210. doi:10.1016/j.techfore.2013.08.007 |
es_ES |
dc.description.references |
Chan, H. K., Wang, X., & Raffoni, A. (2014). An integrated approach for green design: Life-cycle, fuzzy AHP and environmental management accounting. The British Accounting Review, 46(4), 344-360. doi:10.1016/j.bar.2014.10.004 |
es_ES |
dc.description.references |
Tan, R. R., Aviso, K. B., Huelgas, A. P., & Promentilla, M. A. B. (2014). Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. Process Safety and Environmental Protection, 92(5), 467-475. doi:10.1016/j.psep.2013.11.005 |
es_ES |
dc.description.references |
Rezaei, J., Fahim, P. B. M., & Tavasszy, L. (2014). Supplier selection in the airline retail industry using a funnel methodology: Conjunctive screening method and fuzzy AHP. Expert Systems with Applications, 41(18), 8165-8179. doi:10.1016/j.eswa.2014.07.005 |
es_ES |
dc.description.references |
Song, Z., Zhu, H., Jia, G., & He, C. (2014). Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. Journal of Loss Prevention in the Process Industries, 32, 78-94. doi:10.1016/j.jlp.2014.08.002 |
es_ES |
dc.description.references |
Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857. doi:10.1016/j.eswa.2015.06.007 |
es_ES |
dc.description.references |
Mangla, S. K., Kumar, P., & Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study. Resources, Conservation and Recycling, 104, 375-390. doi:10.1016/j.resconrec.2015.01.001 |
es_ES |
dc.description.references |
Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfenderesk, H. (2015). Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 49, 54-65. doi:10.1016/j.compenvurbsys.2014.10.001 |
es_ES |
dc.description.references |
Lupo, T. (2016). A fuzzy framework to evaluate service quality in the healthcare industry: An empirical case of public hospital service evaluation in Sicily. Applied Soft Computing, 40, 468-478. doi:10.1016/j.asoc.2015.12.010 |
es_ES |
dc.description.references |
Tuljak-Suban, D., & Bajec, P. (2018). The Influence of Defuzzification Methods to Decision Support Systems Based on Fuzzy AHP with Scattered Comparison Matrix: Application to 3PLP Selection as a Case Study. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26(03), 475-491. doi:10.1142/s021848851850023x |
es_ES |
dc.description.references |
Akbar, M. A., Shameem, M., Mahmood, S., Alsanad, A., & Gumaei, A. (2020). Prioritization based Taxonomy of Cloud-based Outsource Software Development Challenges: Fuzzy AHP analysis. Applied Soft Computing, 95, 106557. doi:10.1016/j.asoc.2020.106557 |
es_ES |
dc.description.references |
Jung, H. (2011). A fuzzy AHP–GP approach for integrated production-planning considering manufacturing partners. Expert Systems with Applications, 38(5), 5833-5840. doi:10.1016/j.eswa.2010.11.039 |
es_ES |
dc.description.references |
Shaw, K., Shankar, R., Yadav, S. S., & Thakur, L. S. (2012). Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain. Expert Systems with Applications, 39(9), 8182-8192. doi:10.1016/j.eswa.2012.01.149 |
es_ES |
dc.description.references |
Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021 |
es_ES |
dc.description.references |
Akkaya, G., Turanoğlu, B., & Öztaş, S. (2015). An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industrial engineering sector choosing. Expert Systems with Applications, 42(24), 9565-9573. doi:10.1016/j.eswa.2015.07.061 |
es_ES |
dc.description.references |
Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044 |
es_ES |
dc.description.references |
Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. doi:10.1016/j.eswa.2011.08.061 |
es_ES |
dc.description.references |
Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105-116. doi:10.1016/j.asoc.2014.01.003 |
es_ES |
dc.description.references |
Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. doi:10.1016/j.eswa.2013.07.093 |
es_ES |
dc.description.references |
Sun, L., Ma, J., Zhang, Y., Dong, H., & Hussain, F. K. (2016). Cloud-FuSeR: Fuzzy ontology and MCDM based cloud service selection. Future Generation Computer Systems, 57, 42-55. doi:10.1016/j.future.2015.11.025 |
es_ES |
dc.description.references |
Ar, I. M., Erol, I., Peker, I., Ozdemir, A. I., Medeni, T. D., & Medeni, I. T. (2020). Evaluating the feasibility of blockchain in logistics operations: A decision framework. Expert Systems with Applications, 158, 113543. doi:10.1016/j.eswa.2020.113543 |
es_ES |
dc.description.references |
Yalcin, N., Bayrakdaroglu, A., & Kahraman, C. (2012). Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. Expert Systems with Applications, 39(1), 350-364. doi:10.1016/j.eswa.2011.07.024 |
es_ES |
dc.description.references |
Chang, S.-C., Tsai, P.-H., & Chang, S.-C. (2015). A hybrid fuzzy model for selecting and evaluating the e-book business model: A case study on Taiwan e-book firms. Applied Soft Computing, 34, 194-204. doi:10.1016/j.asoc.2015.05.011 |
es_ES |
dc.description.references |
Li, N., & Zhao, H. (2016). Performance evaluation of eco-industrial thermal power plants by using fuzzy GRA-VIKOR and combination weighting techniques. Journal of Cleaner Production, 135, 169-183. doi:10.1016/j.jclepro.2016.06.113 |
es_ES |
dc.description.references |
Mandic, K., Delibasic, B., Knezevic, S., & Benkovic, S. (2014). Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Economic Modelling, 43, 30-37. doi:10.1016/j.econmod.2014.07.036 |
es_ES |
dc.description.references |
Li, Y., Liu, X., & Chen, Y. (2012). Supplier selection using axiomatic fuzzy set and TOPSIS methodology in supply chain management. Fuzzy Optimization and Decision Making, 11(2), 147-176. doi:10.1007/s10700-012-9117-x |
es_ES |
dc.description.references |
Kaya, Ö., Alemdar, K. D., & Çodur, M. Y. (2020). A novel two stage approach for electric taxis charging station site selection. Sustainable Cities and Society, 62, 102396. doi:10.1016/j.scs.2020.102396 |
es_ES |
dc.description.references |
Chen, J.-F., Hsieh, H.-N., & Do, Q. H. (2015). Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Applied Soft Computing, 28, 100-108. doi:10.1016/j.asoc.2014.11.050 |
es_ES |
dc.description.references |
Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39(1), 960-966. doi:10.1016/j.eswa.2011.07.095 |
es_ES |
dc.description.references |
Che, Z. H., Wang, H. S., & Chuang, C.-L. (2010). A fuzzy AHP and DEA approach for making bank loan decisions for small and medium enterprises in Taiwan. Expert Systems with Applications, 37(10), 7189-7199. doi:10.1016/j.eswa.2010.04.010 |
es_ES |
dc.description.references |
Krejčí, J. (2015). Additively reciprocal fuzzy pairwise comparison matrices and multiplicative fuzzy priorities. Soft Computing, 21(12), 3177-3192. doi:10.1007/s00500-015-2000-2 |
es_ES |
dc.description.references |
Xu, Z., & Liao, H. (2014). Intuitionistic Fuzzy Analytic Hierarchy Process. IEEE Transactions on Fuzzy Systems, 22(4), 749-761. doi:10.1109/tfuzz.2013.2272585 |
es_ES |
dc.description.references |
Mikhailov, L. (2000). A fuzzy programming method for deriving priorities in the analytic hierarchy process. Journal of the Operational Research Society, 51(3), 341-349. doi:10.1057/palgrave.jors.2600899 |
es_ES |