- -

Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Penadés-Plà, Vicent es_ES
dc.contributor.author García-Segura, Tatiana es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-24T04:31:43Z
dc.date.available 2021-02-24T04:31:43Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162242
dc.description.abstract [EN] The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached. es_ES
dc.description.sponsorship This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R]. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Robust design optimization es_ES
dc.subject RDO es_ES
dc.subject Post-tensioned concrete es_ES
dc.subject Box-girder bridge es_ES
dc.subject Structural optimization es_ES
dc.subject Metamodel es_ES
dc.subject Kriging es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8030398 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Penadés-Plà, V.; García-Segura, T.; Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics. 8(3):1-14. https://doi.org/10.3390/math8030398 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8030398 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\407084 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Lee, K.-H., & Kang, D.-H. (2006). A robust optimization using the statistics based on kriging metamodel. Journal of Mechanical Science and Technology, 20(8), 1169-1182. doi:10.1007/bf02916016 es_ES
dc.description.references Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002 es_ES
dc.description.references Ahsan, R., Rana, S., & Ghani, S. N. (2012). Cost Optimum Design of Posttensioned I-Girder Bridge Using Global Optimization Algorithm. Journal of Structural Engineering, 138(2), 273-284. doi:10.1061/(asce)st.1943-541x.0000458 es_ES
dc.description.references García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 es_ES
dc.description.references Pnevmatikos, N. G., & Thomos, G. C. (2013). Stochastic structural control under earthquake excitations. Structural Control and Health Monitoring, 21(4), 620-633. doi:10.1002/stc.1589 es_ES
dc.description.references García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012 es_ES
dc.description.references Martí, J. V., García-Segura, T., & Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231-240. doi:10.1016/j.jclepro.2016.02.024 es_ES
dc.description.references Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006 es_ES
dc.description.references Sun, X., Fu, H., & Zeng, J. (2018). Robust Approximate Optimality Conditions for Uncertain Nonsmooth Optimization with Infinite Number of Constraints. Mathematics, 7(1), 12. doi:10.3390/math7010012 es_ES
dc.description.references Rodriguez-Gonzalez, P. T., Rico-Ramirez, V., Rico-Martinez, R., & Diwekar, U. M. (2019). A New Approach to Solving Stochastic Optimal Control Problems. Mathematics, 7(12), 1207. doi:10.3390/math7121207 es_ES
dc.description.references Moayyeri, N., Gharehbaghi, S., & Plevris, V. (2019). Cost-Based Optimum Design of Reinforced Concrete Retaining Walls Considering Different Methods of Bearing Capacity Computation. Mathematics, 7(12), 1232. doi:10.3390/math7121232 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.description.references Valdebenito, M. A., & Schuëller, G. I. (2010). A survey on approaches for reliability-based optimization. Structural and Multidisciplinary Optimization, 42(5), 645-663. doi:10.1007/s00158-010-0518-6 es_ES
dc.description.references Doltsinis, I., & Kang, Z. (2004). Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 193(23-26), 2221-2237. doi:10.1016/j.cma.2003.12.055 es_ES
dc.description.references Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A., Koch, P. N., & Yang, R.-J. (2004). Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization, 27(5). doi:10.1007/s00158-004-0389-9 es_ES
dc.description.references Martínez-Frutos, J., & Martí, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(2), 97-105. doi:10.1016/j.rimni.2013.01.003 es_ES
dc.description.references Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1-13. doi:10.1007/s00158-001-0160-4 es_ES
dc.description.references Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187 es_ES
dc.description.references Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170-189. doi:10.1016/j.engstruct.2018.05.084 es_ES
dc.description.references Jin, R., Du, X., & Chen, W. (2003). The use of metamodeling techniques for optimization under uncertainty. Structural and Multidisciplinary Optimization, 25(2), 99-116. doi:10.1007/s00158-002-0277-0 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Chuang, C. H., Yang, R. J., Li, G., Mallela, K., & Pothuraju, P. (2007). Multidisciplinary design optimization on vehicle tailor rolled blank design. Structural and Multidisciplinary Optimization, 35(6), 551-560. doi:10.1007/s00158-007-0152-0 es_ES
dc.description.references Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266. doi:10.2113/gsecongeo.58.8.1246 es_ES
dc.description.references Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. AIAA Journal, 39(12), 2233-2241. doi:10.2514/2.1234 es_ES
dc.description.references Forrester, A. I. J., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45(1-3), 50-79. doi:10.1016/j.paerosci.2008.11.001 es_ES
dc.description.references Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for Computer-based Engineering Design: Survey and recommendations. Engineering with Computers, 17(2), 129-150. doi:10.1007/pl00007198 es_ES
dc.description.references Camp, C. V., & Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Engineering Structures, 48, 363-372. doi:10.1016/j.engstruct.2012.09.004 es_ES
dc.description.references Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014 es_ES
dc.description.references Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213) es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem