- -

High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study

Show full item record

Ilisie, V.; Moliner, L.; Oliver-Gil, S.; Sánchez Martínez, F.; González Martínez, AJ.; Seimetz, M.; Rodríguez Álvarez, MJ.... (2019). High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-54934-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162245

Files in this item

Item Metadata

Title: High resolution and sensitivity gamma camera with active septa. A first Monte Carlo study
Author: Ilisie, Victor Moliner, Laura Oliver-Gil, Sandra Sánchez Martínez, Filomeno González Martínez, Antonio Javier Seimetz, Michael Rodríguez Álvarez, María José Benlloch Baviera, Jose María
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Gamma cameras are of great interest due to their high potential in the field of Nuclear Medicine Imaging. They allow for an early diagnosis of reduced size tumors, and also for a wide variety of preclinical studies ...[+]
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-019-54934-0
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-019-54934-0
Project ID:
info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/
info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-1-R/ES/DESARROLLO DEL HARDWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE ESTRES/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F086/
info:eu-repo/grantAgreement/MINECO//RTC-2016-5186-1/ES/Control objetivo del deterioro cognitivo mediante análisis de imagen de amiloide/
Thanks:
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 695536). This work was supported in part by the ...[+]
Type: Artículo

References

Mok, G. S. P., Tsui, B. M. W. & Beekman, F. J. The effects of object activity distribution on multiplexing multi-pinhole SPECT. Phys. Med. Biol. 56, 2635–2650 (2011).

Johnson, C., Shokouhi, S. & Peterson, T. E. Reducing Multiplexing artifacts in Multi-Pinhole SPECT with a Stacked Silicon-Germanium System: a Simulation Study. IEEE Trans Med Imaging. 33(12), 2342–2351 (2014).

Mok, G. S. P., Wang, Y. & Tsui, B. M. W. Quantification of the Multiplexing Effects in Multi-Pinhole Small Animal SPECT: A Simulation Study. IEEE Trans Nucl Sci. 56(5), 2636–2643 (2009). [+]
Mok, G. S. P., Tsui, B. M. W. & Beekman, F. J. The effects of object activity distribution on multiplexing multi-pinhole SPECT. Phys. Med. Biol. 56, 2635–2650 (2011).

Johnson, C., Shokouhi, S. & Peterson, T. E. Reducing Multiplexing artifacts in Multi-Pinhole SPECT with a Stacked Silicon-Germanium System: a Simulation Study. IEEE Trans Med Imaging. 33(12), 2342–2351 (2014).

Mok, G. S. P., Wang, Y. & Tsui, B. M. W. Quantification of the Multiplexing Effects in Multi-Pinhole Small Animal SPECT: A Simulation Study. IEEE Trans Nucl Sci. 56(5), 2636–2643 (2009).

Vunckx, K., Suetens, P. & Nuyts, J. Effect of Overlapping Projections on Reconstruction Image Quality in Multipinhole SPECT. IEEE Transactions on Medical Imaging. 27(7) (2008).

Ivashchenko, O. et al. Quarter-Millimeter-Resolution Molecular Mouse Imaging with U-SPECT+. Mol Imaging. 2014. 13 (2014).

Gal, O. et al. Development of a portable gamma camera with coded apertura. Nuclear Instruments and Methods in Phys. Res. A. 563, 233–237 (2006).

Accorsi, R., Gasparini, F. & Lanza, R. C. A Coded Aperture for High-Resolution Nuclear Medicine Planar Imaging With a Conventional Anger Camera: Experimental Results. IEEE Transactions on Nuclear Science. 48, 2411–2417 (2001).

Fuji, H. et al. Optimization of Coded Aperture Radioscintigraphy for Sentinel Lymph Node Mapping. Mol. Imaging Biol. 14, 173–182 (2012).

Accorsi, R., Gasparini, F. & Lanza, R. C. Optimal coded aperture patterns for improved SNR in nuclear medicine imaging. Nucl. Instrum. Methods Phys. Res. A. 474, 273–284 (2001).

Lee, T. & Lee, W. Portable Active Collimation Imager Using URA Patterned Scintillator. IEEE Transactions on Nuclear Science. 61, 654–662 (2014).

Lee, T. & Lee, W. A cubic gamma camera with an active collimator. Applied Radiation and Isotopes. 90, 102–108 (2014).

Accorsi, R. & Lanza, R. C. Near-field artifact reduction in coded aperture imaging. Appl. Opt. 40, 4697–4705 (2001).

Ilisie, V., Sánchez, F., González, A. J. & Benlloch, J. M. Dispositivo Para la Detección de Rayos Gamma con Tabiques Activos (Device for Gamma Ray Detection with Active Septa), Patent application Ref. P201831058/PT-018004.

González, A. J. et al. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study. Nuclear Instruments and Methods in Physics Research A. 787, 42–45 (2015).

Pani, R. et al. Preliminary evaluation of a monolithic detector module for integrated PET/MRI scanner with high spatial resolution. JINST. 10, C06006 (2015).

Pani, R. et al. Continuous DOI determination by Gaussian modelling of linear and non-linear scintillation light distributions. Proc. IEEE NSS-MIC. 3386–3389 (2011).

Shepp, L. A. & Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging. 2, 113 (1982).

Hudson, H. M. & Larkin, R. S. Accelerated Image Reconstruction Using Ordered Subsets of projection Data. IEEE Transactions on Medical Imaging. 13, 601 (1994).

Reader, A. J. et al. Accelerated list-mode EM algorithm. IEEE Transactions on Nuclear Science. 49, 42 (2002).

Rahmim, A., Ruth, T. & Sossi, V. Study of a convergent subsetized list-mode EM reconstruction algorithm. FILTR SEP. 6. 3978–3982. 6, 10.1109 (2004).

Siddon, R. L. Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics. 12, 252 (1985).

Sundermann, E., Jacobs, F., Christiaens, M., De Sutter, B. & Lemahieu, I. A Fast Algorithm to Calculate the Exact Radiological Path Through a Pixel Or Voxel Space. Journal of Computing and Information Technology. 6 (1998).

Reader, A. J. et al. One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays. IEEE Transactions on Nuclear Science. 49(3), 693–699 (2002).

Agostinelli, S. et al. Geant4 - a simulation toolkit. Nuclear Instruments and Methods in Physics Research A. 506, 250–303 (2003).

Jan, S. et al. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record