- -

Spray pyrolysis synthesis and characterization of Mg1-xSrxMoO4 heterostructure with white light emission

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spray pyrolysis synthesis and characterization of Mg1-xSrxMoO4 heterostructure with white light emission

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santiago, A. A. G. es_ES
dc.contributor.author Tranquilin, R. L. es_ES
dc.contributor.author Botella, P. es_ES
dc.contributor.author Manjón, Francisco-Javier es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Paskocimas, C. A. es_ES
dc.contributor.author Motta, F. V. es_ES
dc.contributor.author Bomio, M. R. D. es_ES
dc.date.accessioned 2021-02-24T04:31:51Z
dc.date.available 2021-02-24T04:31:51Z
dc.date.issued 2020-01-15 es_ES
dc.identifier.issn 0925-8388 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162246
dc.description.abstract [EN] Molybdates are inorganic materials with great potential in white phosphors application, being an alternative to traditional lighting sources. In this study, we report the synthesis and characterization of Mg1-xSrxMoO4 (x = 0, 0.25, 0.50, 0.75, and 1) powders with white light-emitting properties. Using X-ray diffraction, the formation of the monoclinic beta-MgMoO4 phase was observed for x = 0 and the formation of the tetragonal scheelite phase of SrMoO4 was observed for x = 1. The formation of a heterostructure composed of both phases was found for compositions with x = 0.25, 0.50 and 0.75. Scanning and trasmission electron microscopy images showed that the Mg1-xSrxMoO4 particles exhibit a spherical morphology formed by several primary nanoparticles. Raman scattering spectroscopy enabled the accurate identification of the Raman modes for different compositions and their assignment to either the SrMoO4 or beta-MgMoO4 modes. The bandgap energies were determined to fluctuate between 4.25 eV and 4.44 eV, being influenced by the degree of structural disorder. The photoluminescence emission spectra of the nanoparticles showed neutral- and cool-white emission with high-quality white light (CRI > 80%). The samples synthesized with x <= 0.50 are potential materials for the application in LED lamps (6500 K) and pure white-light sources (5500 K). es_ES
dc.description.sponsorship The authors thank the following Brazilian and Spanish research financing institutions for financial support: A.A.G. Santiago acknowledges financial support from the National Council for Scientific and Technological Development -CNPq, the Graduate Program in Materials Science and Engineering (PPGCEM-UFRN) and the Coordination for the Improvement of Higher Education Personnel (CAPES) -Brazil (CAPES) -Finance Code 001. F.J.M. and D.E. acknowledge financial support from the Spanish Ministerio de Ciencia, Innovacion y Universidades, the Spanish Agencia Estatal de Investigacion (AEI), and the Fondo Europeo de Desarrollo Regional (FEDER) under Grants No. MAT2016-75586-C4-1/2-P and from the Generalitat Valenciana under Grant Prometeo/2018/123 - EFIMAT. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Alloys and Compounds es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ultrasonic spray pyrolysis es_ES
dc.subject Raman spectroscopy es_ES
dc.subject Photoluminescence es_ES
dc.subject Molybdate es_ES
dc.subject White emission es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Spray pyrolysis synthesis and characterization of Mg1-xSrxMoO4 heterostructure with white light emission es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jallcom.2019.152235 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Santiago, AAG.; Tranquilin, RL.; Botella, P.; Manjón, F.; Errandonea, D.; Paskocimas, CA.; Motta, FV.... (2020). Spray pyrolysis synthesis and characterization of Mg1-xSrxMoO4 heterostructure with white light emission. Journal of Alloys and Compounds. 813:1-13. https://doi.org/10.1016/j.jallcom.2019.152235 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jallcom.2019.152235 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 813 es_ES
dc.relation.pasarela S\403147 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidade Federal do Rio Grande do Norte es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Gao, Z., Sun, P., Zhong, Y., Yu, R., & Deng, B. (2019). Eu3+-doped highly thermal-stable barium yttrium aluminate as a red-emitting phosphor for UV based white LED. Optics & Laser Technology, 111, 163-168. doi:10.1016/j.optlastec.2018.09.026 es_ES
dc.description.references Zhong, J., Chen, X., Chen, D., Liu, M., Zhu, Y., Li, X., & Ji, Z. (2019). A novel rare-earth free red-emitting Li3Mg2SbO6:Mn4+ phosphor-in-glass for warm w-LEDs: Synthesis, structure, and luminescence properties. Journal of Alloys and Compounds, 773, 413-422. doi:10.1016/j.jallcom.2018.09.162 es_ES
dc.description.references Chen, J., Liu, Y., Mei, L., Liu, H., Fang, M., & Huang, Z. (2015). Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes. Scientific Reports, 5(1). doi:10.1038/srep09673 es_ES
dc.description.references Du, P., Guo, Y., Lee, S. H., & Yu, J. S. (2017). Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes. RSC Advances, 7(6), 3170-3178. doi:10.1039/c6ra25652j es_ES
dc.description.references Farooq, U., Zhao, Z., Sui, Z., Gao, C., Dai, R., Wang, Z., & Zhang, Z. (2019). Tm3+/Dy3+/Eu3+ (Sm3+) tri-activated Y2WO6 as one potential single-phase phosphor for WLEDs. Journal of Alloys and Compounds, 778, 942-950. doi:10.1016/j.jallcom.2018.11.091 es_ES
dc.description.references Humayoun, U. B., Kwon, S. B., Sami, S. K., & Yoon, D.-H. (2019). (NH4)3AlF6:Mn4+ a novel red phosphor – Facile synthesis, structure and luminescence characteristics. Journal of Alloys and Compounds, 776, 594-598. doi:10.1016/j.jallcom.2018.10.117 es_ES
dc.description.references Yi, S., Hu, X., Liang, B., Hu, G., Zhao, W., & Wang, Y. (2019). Synthesis and photoluminescence properties of Ln3+ (Ln3+ = Sm3+/Eu3+) doped Na2NbAlO5 phosphors. Journal of Luminescence, 207, 105-113. doi:10.1016/j.jlumin.2018.11.007 es_ES
dc.description.references Hou, J., Pan, C., Chen, X., Zhao, G., Liu, Y., Li, Y., & Fang, Y. (2018). White-light-emitting from single-phased (Ca,Eu,Mn)9Al(PO4)7 phosphor with blue-white-yellow tunable luminescence properties for UV-based LEDs. Materials Technology, 34(3), 135-142. doi:10.1080/10667857.2018.1540331 es_ES
dc.description.references Iwaki, M., Kumagai, S., Konishi, S., Koizumi, A., Hasegawa, T., Uematsu, K., … Sato, M. (2019). Blue-yellow multicolor phosphor, Eu2+-activated Li3NaSiO4: Excellent thermal stability and quenching mechanism. Journal of Alloys and Compounds, 776, 1016-1024. doi:10.1016/j.jallcom.2018.10.299 es_ES
dc.description.references Zheng, X., Ding, G., Wang, H., Cui, G., & Zhang, P. (2019). One-step hydrothermal synthesis of carbon dots-polymer composites with solid-state photoluminescence. Materials Letters, 238, 22-25. doi:10.1016/j.matlet.2018.11.147 es_ES
dc.description.references García-Tecedor, M., Bartolomé, J., Maestre, D., Trampert, A., & Cremades, A. (2018). Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission. Nano Research, 12(2), 441-448. doi:10.1007/s12274-018-2236-0 es_ES
dc.description.references Wang, Z., Yang, Z., Yang, Z., Wei, Q., Zhou, Q., Ma, L., & Wang, X. (2018). Red Phosphor Rb2NbOF5:Mn4+ for Warm White Light-Emitting Diodes with a High Color-Rendering Index. Inorganic Chemistry, 58(1), 456-461. doi:10.1021/acs.inorgchem.8b02676 es_ES
dc.description.references Ezquerro, C., Fresta, E., Serrano, E., Lalinde, E., García-Martínez, J., Berenguer, J. R., & Costa, R. D. (2019). White-emitting organometallo-silica nanoparticles for sun-like light-emitting diodes. Materials Horizons, 6(1), 130-136. doi:10.1039/c8mh00578h es_ES
dc.description.references Santiago, A. A. G., Almeida, C. R. R., Tranquilin, R. L., Nascimento, R. M., Paskocimas, C. A., Longo, E., … Bomio, M. R. D. (2018). Photoluminescent properties of the Ba1−xZnxMoO4 heterostructure obtained by ultrasonic spray pyrolysis. Ceramics International, 44(4), 3775-3786. doi:10.1016/j.ceramint.2017.11.161 es_ES
dc.description.references Almeida, C. R. R., Lovisa, L. X., Santiago, A. A. G., Li, M. S., Longo, E., Paskocimas, C. A., … Bomio, M. R. D. (2017). One-step synthesis of CaMoO4: Eu3+ nanospheres by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 28(22), 16867-16879. doi:10.1007/s10854-017-7605-z es_ES
dc.description.references Tavares, M. T. S., Melo, M. M., Araújo, V. D., Tranquilin, R. L., Almeida, C. R. R., Paskocimas, C. A., … Motta, F. V. (2016). Enhancement of the photocatalytic activity and white emission of CaIn 2 O 4 nanocrystals. Journal of Alloys and Compounds, 658, 316-323. doi:10.1016/j.jallcom.2015.10.155 es_ES
dc.description.references Santiago, A. A. G., Fernandes, Y. L. R. L., Tranquilin, R. L., Longo, E., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2019). Influence of Zn1-xCaxWO4 heterostructures synthesized by spray pyrolysis on photoluminescence property. Ceramics International, 45(17), 23256-23264. doi:10.1016/j.ceramint.2019.08.022 es_ES
dc.description.references Zheng, J., Song, F., Che, S., Li, W., Ying, Y., Yu, J., & Qiao, L. (2018). One step synthesis process for fabricating NiFe 2 O 4 nanoparticle loaded porous carbon spheres by ultrasonic spray pyrolysis. Advanced Powder Technology, 29(6), 1474-1480. doi:10.1016/j.apt.2018.03.011 es_ES
dc.description.references Mao, S., Bao, R., Fang, D., & Yi, J. (2018). Facile synthesis of Ag/AgX (X = Cl, Br) with enhanced visible-light-induced photocatalytic activity by ultrasonic spray pyrolysis method. Advanced Powder Technology, 29(11), 2670-2677. doi:10.1016/j.apt.2018.07.016 es_ES
dc.description.references Zhao, X., Li, W., Kong, F., Chen, H., Wang, Z., Liu, S., & Jin, C. (2018). Carbon spheres derived from biomass residue via ultrasonic spray pyrolysis for supercapacitors. Materials Chemistry and Physics, 219, 461-467. doi:10.1016/j.matchemphys.2018.08.055 es_ES
dc.description.references Santiago, A. A. G., Lovisa, L. X., Medeiros, P. N., Li, M. S., Carreño, N. L. V., Longo, E., … Motta, F. V. (2019). Fast and simultaneous doping of Sr0.9−−−Ca0.1In2O4:(xEu3+, yTm3+, zTb3+) superstructure by ultrasonic spray pyrolysis. Ultrasonics Sonochemistry, 56, 14-24. doi:10.1016/j.ultsonch.2019.03.028 es_ES
dc.description.references Park, G. D., Hong, J. H., Lee, J.-K., & Kang, Y. C. (2019). Yolk–shell-structured microspheres composed of N-doped-carbon-coated NiMoO4 hollow nanospheres as superior performance anode materials for lithium-ion batteries. Nanoscale, 11(2), 631-638. doi:10.1039/c8nr08638a es_ES
dc.description.references Ahn, J. H., Park, G. D., Kang, Y. C., & Lee, J.-H. (2015). Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries. Electrochimica Acta, 174, 102-110. doi:10.1016/j.electacta.2015.05.149 es_ES
dc.description.references Wu, J. L., Wang, X., Peng, G. H., Liang, Z. H., & Wang, X. F. (2014). Spherical SrMoO4:Eu3+ Phosphors Prepared by Spray Pyrolysis. Advanced Materials Research, 924, 93-97. doi:10.4028/www.scientific.net/amr.924.93 es_ES
dc.description.references Baqué, L., Vega-Castillo, J., Georges, S., Caneiro, A., & Djurado, E. (2013). Microstructural and electrical characterizations of tungsten-doped La2Mo2O9 prepared by spray pyrolysis. Ionics, 19(12), 1761-1774. doi:10.1007/s11581-013-0912-3 es_ES
dc.description.references Validžić, I. L., & Mitrić, M. (2012). Novel morphology of needle-Like nanoparticles of Na2Mo2O7 synthesized by using Ultrasonic spray pyrolysis. Materials Research, 16(1), 44-49. doi:10.1590/s1516-14392012005000142 es_ES
dc.description.references Ko, Y. N., Kang, Y. C., & Park, S. B. (2014). Superior cycling and rate performances of rattle-type CoMoO4 microspheres prepared by one-pot spray pyrolysis. RSC Advances, 4(34), 17873. doi:10.1039/c4ra01278j es_ES
dc.description.references Tan, Y., Luo, X., Mao, M., Shu, D., Shan, W., Li, G., & Guo, D. (2018). Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment. Current Applied Physics, 18(11), 1403-1409. doi:10.1016/j.cap.2018.08.005 es_ES
dc.description.references Albohani, S., Minakshi Sundaram, M., & Laird, D. W. (2019). Egg shell membrane template stabilises formation of β-NiMoO4 nanowires and enhances hybrid supercapacitor behaviour. Materials Letters, 236, 64-68. doi:10.1016/j.matlet.2018.10.034 es_ES
dc.description.references Raj, A. K. V., Prabhakar Rao, P., Sreena, T. S., & Aju Thara, T. R. (2018). Broad greenish-yellow luminescence in CaMoO4 by Si4+ acceptor doping as potential phosphors for white light emitting diode applications. Journal of Materials Science: Materials in Electronics, 29(19), 16647-16653. doi:10.1007/s10854-018-9757-x es_ES
dc.description.references Pandey, I. R., Kim, H. J., & Kim, Y. D. (2017). Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches. Journal of Crystal Growth, 480, 62-66. doi:10.1016/j.jcrysgro.2017.09.031 es_ES
dc.description.references Huerta-Flores, A. M., Juárez-Ramírez, I., Torres-Martínez, L. M., Carrera-Crespo, J. E., Gómez-Bustamante, T., & Sarabia-Ramos, O. (2018). Synthesis of AMoO4 (A = Ca, Sr, Ba) photocatalysts and their potential application for hydrogen evolution and the degradation of tetracycline in water. Journal of Photochemistry and Photobiology A: Chemistry, 356, 29-37. doi:10.1016/j.jphotochem.2017.12.029 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Achary, S. N., Tyagi, A. K., Gall, P., & Gougeon, P. (2011). High-pressure x-ray diffraction study of CdMoO4 and EuMoO4. Journal of Applied Physics, 109(4), 043510-043510-5. doi:10.1063/1.3553850 es_ES
dc.description.references Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Errandonea, D., … Tyagi, A. K. (2012). Raman scattering study of bulk and nanocrystalline PbMoO4 at high pressures. Journal of Applied Physics, 112(10), 103510. doi:10.1063/1.4765717 es_ES
dc.description.references Cornu, L., Jubera, V., Demourgues, A., Salek, G., & Gaudon, M. (2017). Luminescence properties and pigment properties of A-doped (Zn,Mg)MoO4 triclinic oxides (with A = Co, Ni, Cu or Mn). Ceramics International, 43(16), 13377-13387. doi:10.1016/j.ceramint.2017.07.040 es_ES
dc.description.references Ran, W., Wang, L., Yang, M., Kong, X., Qu, D., & Shi, J. (2017). Enhanced energy transfer from Bi3+ to Eu3+ ions relying on the criss-cross cluster structure in MgMoO4 phosphor. Journal of Luminescence, 192, 141-147. doi:10.1016/j.jlumin.2017.06.039 es_ES
dc.description.references Soni, A. K., & Mahata, M. K. (2017). Photoluminescence and cathodoluminescence studies of Er3+-activated strontium molybdate for solid-state lighting and display applications. Materials Research Express, 4(12), 126201. doi:10.1088/2053-1591/aa9a52 es_ES
dc.description.references Chun, F., Li, W., Zhang, B., Deng, W., Chu, X., Su, H., … Yang, W. (2018). Visible and near-infrared luminescent properties of Pr3+ doped strontium molybdate thin films by a facile polymer-assisted deposition process. Journal of Colloid and Interface Science, 531, 181-188. doi:10.1016/j.jcis.2018.07.040 es_ES
dc.description.references Zhou, L.-Y., Wei, J.-S., Yi, L.-H., Gong, F.-Z., Huang, J.-L., & Wang, W. (2009). A promising red phosphor MgMoO4:Eu3+ for white light emitting diodes. Materials Research Bulletin, 44(6), 1411-1414. doi:10.1016/j.materresbull.2008.11.019 es_ES
dc.description.references Spasskii, D. A., Kolobanov, V. N., Mikhaĭlin, V. V., Berezovskaya, L. Y., Ivleva, L. I., & Voronina, I. S. (2009). Luminescence peculiarities and optical properties of MgMoO4 and MgMoO4:Yb crystals. Optics and Spectroscopy, 106(4), 556-563. doi:10.1134/s0030400x09040171 es_ES
dc.description.references Zhai, Y.-Q., Li, R.-F., Li, X., & Li, J.-H. (2015). Rapid synthesis and properties of color-tunable phosphors SrMoO4:Eu3+,Tb3+. Rare Metals, 36(10), 828-832. doi:10.1007/s12598-015-0518-1 es_ES
dc.description.references Chun, F., Zhang, B., Su, H., Osman, H., Deng, W., Deng, W., … Yang, W. (2017). Preparation and luminescent properties of self-organized broccoli-like SrMoO4: Pr3+ superparticles. Journal of Luminescence, 190, 69-75. doi:10.1016/j.jlumin.2017.05.028 es_ES
dc.description.references Wang, Y., Wu, W., Fu, X., Liu, M., Cao, J., Shao, C., & Chen, S. (2017). Metastable scheelite CdWO4:Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dyes and Pigments, 147, 283-290. doi:10.1016/j.dyepig.2017.08.025 es_ES
dc.description.references Zhu, Y.-N., Zheng, G.-H., Dai, Z.-X., Mu, J.-J., & Yao, Z.-F. (2017). Mono-disperse SrMoO4 nanocrystals: Synthesis, luminescence and photocatalysis. Journal of Materials Science & Technology, 33(8), 834-842. doi:10.1016/j.jmst.2017.03.008 es_ES
dc.description.references Paradelas, S. M. V., Gonçalves, R. F., Motta, F. V., Lima, R. C., Li, M. S., Longo, E., & Marques, A. P. de A. (2017). Effects of microwave-assisted hydrothermal treatment and of use of capping reagent on the photophysical properties of SrMoO4 phosphors. Journal of Luminescence, 192, 818-826. doi:10.1016/j.jlumin.2017.08.016 es_ES
dc.description.references Zhu, D., Wang, C., & Jiang, F. (2017). Preparation and luminescent properties of Ba0.05Sr0.95MoO4: Tm3+ Dy3+ white-light phosphors. Journal of Luminescence, 192, 1235-1241. doi:10.1016/j.jlumin.2017.08.062 es_ES
dc.description.references Medeiros, P. N., Santiago, A. A. G., Ferreira, E. A. C., Li, M. S., Longo, E., Bomio, M. R. D., & Motta, F. V. (2018). Influence Ca-doped SrIn2O4 powders on photoluminescence property prepared one step by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 747, 1078-1087. doi:10.1016/j.jallcom.2018.03.090 es_ES
dc.description.references Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 es_ES
dc.description.references Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558 es_ES
dc.description.references Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F., & Nicolopoulos, S. (2015). Fast electron diffraction tomography. Journal of Applied Crystallography, 48(3), 718-727. doi:10.1107/s1600576715004604 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Ma, X., & Tu, C. (2008). High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes. Journal of Solid State Chemistry, 181(2), 355-364. doi:10.1016/j.jssc.2007.12.010 es_ES
dc.description.references Messing, G. L., Zhang, S.-C., & Jayanthi, G. V. (1993). Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 76(11), 2707-2726. doi:10.1111/j.1151-2916.1993.tb04007.x es_ES
dc.description.references Miller, P. J. (1971). The Raman spectra of MgMoO4. Spectrochimica Acta Part A: Molecular Spectroscopy, 27(7), 957-960. doi:10.1016/0584-8539(71)80178-2 es_ES
dc.description.references Coelho, M. N., Freire, P. T. C., Maczka, M., Luz-Lima, C., Saraiva, G. D., Paraguassu, W., … Pizani, P. S. (2013). High-pressure Raman scattering of MgMoO4. Vibrational Spectroscopy, 68, 34-39. doi:10.1016/j.vibspec.2013.05.007 es_ES
dc.description.references Jayaraman, A., Wang, S. Y., Shieh, S. R., Sharma, S. K., & Ming, L. C. (1995). High-pressure Raman study of SrMoO4 up to 37 GPa and pressure-induced phase transitions. Journal of Raman Spectroscopy, 26(6), 451-455. doi:10.1002/jrs.1250260609 es_ES
dc.description.references Errandonea, D., Gracia, L., Lacomba-Perales, R., Polian, A., & Chervin, J. C. (2013). Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 113(12), 123510. doi:10.1063/1.4798374 es_ES
dc.description.references Tolvaj, L., Mitsui, K., & Varga, D. (2010). Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood. Wood Science and Technology, 45(1), 135-146. doi:10.1007/s00226-010-0314-x es_ES
dc.description.references Wood, D. L., & Tauc, J. (1972). Weak Absorption Tails in Amorphous Semiconductors. Physical Review B, 5(8), 3144-3151. doi:10.1103/physrevb.5.3144 es_ES
dc.description.references Lovisa, L. X., Oliveira, M. C., Andrés, J., Gracia, L., Li, M. S., Longo, E., … Motta, F. V. (2018). Structure, morphology and photoluminescence emissions of ZnMoO4: RE 3+=Tb3+ - Tm3+ - X Eu3+ (x = 1, 1.5, 2, 2.5 and 3 mol%) particles obtained by the sonochemical method. Journal of Alloys and Compounds, 750, 55-70. doi:10.1016/j.jallcom.2018.03.394 es_ES
dc.description.references Pawlikowska, M., Fuks, H., & Tomaszewicz, E. (2017). Solid state and combustion synthesis of Mn2+-doped scheelites – Their optical and magnetic properties. Ceramics International, 43(16), 14135-14145. doi:10.1016/j.ceramint.2017.07.154 es_ES
dc.description.references Dutta, S., Som, S., Kunti, A. K., Kumar, V., Sharma, S. K., Swart, H. C., & Visser, H. G. (2017). Structural and luminescence responses of CaMoO4 nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: Elemental and spectral stability. Acta Materialia, 124, 109-119. doi:10.1016/j.actamat.2016.11.002 es_ES
dc.description.references Gurgel, G. M., Lovisa, L. X., Pereira, L. M., Motta, F. V., Li, M. S., Longo, E., … Bomio, M. R. D. (2017). Photoluminescence properties of (Eu, Tb, Tm) co-doped PbMoO4 obtained by sonochemical synthesis. Journal of Alloys and Compounds, 700, 130-137. doi:10.1016/j.jallcom.2016.12.409 es_ES
dc.description.references Panchal, V., Garg, N., Poswal, H. K., Errandonea, D., Rodríguez-Hernández, P., Muñoz, A., & Cavalli, E. (2017). High-pressure behavior of CaMoO4. Physical Review Materials, 1(4). doi:10.1103/physrevmaterials.1.043605 es_ES
dc.description.references Silva, M. M. S., Sena, M. S., Lopes-Moriyama, A. L., Souza, C. P., & Santos, A. G. (2018). Experimental planning of the synthesis of strontium molybdate by EDTA-citrate and its structural influence, morphology and optical bandgap. Ceramics International, 44(14), 16606-16614. doi:10.1016/j.ceramint.2018.06.087 es_ES
dc.description.references Wannapop, S., Thongtem, T., & Thongtem, S. (2013). Fabrication of MgMoO4–PVA and MgMoO4 fibrous webs via a direct high voltage electrospinning process. Journal of Physics and Chemistry of Solids, 74(5), 677-681. doi:10.1016/j.jpcs.2013.01.002 es_ES
dc.description.references Zhang, L., He, W., Shen, K., Liu, Y., & Guo, S. (2018). Controllable synthesis of hierarchical MgMoO4 nanosheet-arrays and nano-flowers assembled with mesoporous ultrathin nanosheets. Journal of Physics and Chemistry of Solids, 115, 215-220. doi:10.1016/j.jpcs.2017.12.047 es_ES
dc.description.references Lacomba-Perales, R., Ruiz-Fuertes, J., Errandonea, D., Martínez-García, D., & Segura, A. (2008). Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius. EPL (Europhysics Letters), 83(3), 37002. doi:10.1209/0295-5075/83/37002 es_ES
dc.description.references Alencar, L. D. S., Mesquita, A., Feitosa, C. A. C., Balzer, R., Probst, L. F. D., Batalha, D. C., … Bernardi, M. I. B. (2017). Preparation, characterization and catalytic application of Barium molybdate (BaMoO 4 ) and Barium tungstate (BaWO 4 ) in the gas-phase oxidation of toluene. Ceramics International, 43(5), 4462-4469. doi:10.1016/j.ceramint.2016.12.096 es_ES
dc.description.references Abreu, M. F. C., Motta, F. V., Lima, R. C., Li, M. S., Longo, E., & Marques, A. P. de A. (2014). Effect of process parameters on photophysical properties and barium molybdate phosphors characteristics. Ceramics International, 40(5), 6719-6729. doi:10.1016/j.ceramint.2013.11.134 es_ES
dc.description.references Sczancoski, J. C., Cavalcante, L. S., Marana, N. L., da Silva, R. O., Tranquilin, R. L., Joya, M. R., … Andrés, J. (2010). Electronic structure and optical properties of BaMoO4 powders. Current Applied Physics, 10(2), 614-624. doi:10.1016/j.cap.2009.08.006 es_ES
dc.description.references Longo, V. M., Cavalcante, L. S., Paris, E. C., Sczancoski, J. C., Pizani, P. S., Li, M. S., … Varela, J. A. (2011). Hierarchical Assembly of CaMoO4 Nano-Octahedrons and Their Photoluminescence Properties. The Journal of Physical Chemistry C, 115(13), 5207-5219. doi:10.1021/jp1082328 es_ES
dc.description.references Botelho, G., Nogueira, I. C., Moraes, E., & Longo, E. (2016). Study of structural and optical properties of CaMoO4 nanoparticles synthesized by the microwave-assisted solvothermal method. Materials Chemistry and Physics, 183, 110-120. doi:10.1016/j.matchemphys.2016.08.008 es_ES
dc.description.references Thongtem, T., Kungwankunakorn, S., Kuntalue, B., Phuruangrat, A., & Thongtem, S. (2010). Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. Journal of Alloys and Compounds, 506(1), 475-481. doi:10.1016/j.jallcom.2010.07.033 es_ES
dc.description.references Longo, V. M., Cavalcante, L. S., de Figueiredo, A. T., Santos, L. P. S., Longo, E., Varela, J. A., … Hernandes, A. C. (2007). Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders. Applied Physics Letters, 90(9), 091906. doi:10.1063/1.2709992 es_ES
dc.description.references Marques, V. S., Cavalcante, L. S., Sczancoski, J. C., Alcântara, A. F. P., Orlandi, M. O., Moraes, E., … Santos, M. R. M. C. (2010). Effect of Different Solvent Ratios (Water/Ethylene Glycol) on the Growth Process of CaMoO4 Crystals and Their Optical Properties. Crystal Growth & Design, 10(11), 4752-4768. doi:10.1021/cg100584b es_ES
dc.description.references Longo, V. M., Figueiredo, A. T. de, Campos, A. B., Espinosa, J. W. M., Hernandes, A. C., Taft, C. A., … Longo, E. (2008). Different Origins of Green-Light Photoluminescence Emission in Structurally Ordered and Disordered Powders of Calcium Molybdate. The Journal of Physical Chemistry A, 112(38), 8920-8928. doi:10.1021/jp801587w es_ES
dc.description.references Fabbro, M. T., Foggi, C. C., Santos, L. P. S., Gracia, L., Perrin, A., Perrin, C., … Longo, E. (2016). Synthesis, antifungal evaluation and optical properties of silver molybdate microcrystals in different solvents: a combined experimental and theoretical study. Dalton Transactions, 45(26), 10736-10743. doi:10.1039/c6dt00343e es_ES
dc.description.references Ren, Y., Yang, Z., Li, M., Ruan, J., Zhao, J., Qiu, J., … Zhou, D. (2019). Reversible Upconversion Luminescence Modification Based on Photochromism in BaMgSiO 4  :Yb 3+ ,Tb 3+ Ceramics for Anti‐Counterfeiting Applications. Advanced Optical Materials, 7(15), 1900213. doi:10.1002/adom.201900213 es_ES
dc.description.references Ruan, J., Yang, Z., Huang, A., Zhang, H., Qiu, J., & Song, Z. (2018). Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor. ACS Applied Materials & Interfaces, 10(17), 14941-14947. doi:10.1021/acsami.8b03616 es_ES
dc.description.references Nizamoglu, S., Zengin, G., & Demir, H. V. (2008). Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index. Applied Physics Letters, 92(3), 031102. doi:10.1063/1.2833693 es_ES
dc.description.references Setlur, A. A., Radkov, E. V., Henderson, C. S., Her, J.-H., Srivastava, A. M., Karkada, N., … Happek, U. (2010). Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors. Chemistry of Materials, 22(13), 4076-4082. doi:10.1021/cm100960g es_ES
dc.description.references Adya, V. C., Mohapatra, M., Bhide, M. K., & Natarajan, V. (2016). Observation of «cool daylight» white light emission from Eu and Tb co-doped SrMoO4 nano ceramics. Materials Science and Engineering: B, 203, 35-40. doi:10.1016/j.mseb.2015.10.010 es_ES
dc.description.references Cao, R., Chen, K., Liu, P., Cao, C., Xu, Y., Ao, H., & Tang, P. (2015). Tunable photoluminescence properties of Sr1-yCayMoO4:Sm3+phosphors (0 ≤ y < 1). Luminescence, 30(7), 962-966. doi:10.1002/bio.2845 es_ES
dc.description.references Han, L., Liu, G., Dong, X., Wang, J., Wang, X., & Yang, Y. (2017). A potential single-component white-light-emitting phosphor CaMoO4:La3+,Dy3+: hydrothermal synthesis, luminescence properties and energy transfer. Journal of Materials Science: Materials in Electronics, 28(21), 16519-16526. doi:10.1007/s10854-017-7564-4 es_ES
dc.description.references Laguna, M., Nuñez, N. O., Becerro, A. I., & Ocaña, M. (2017). Morphology control of uniform CaMoO4microarchitectures and development of white light emitting phosphors by Ln doping (Ln = Dy3+, Eu3+). CrystEngComm, 19(12), 1590-1600. doi:10.1039/c6ce02611g es_ES
dc.description.references Das, S., Reed McDonagh, P., Selvan Sakthivel, T., Barkam, S., Killion, K., Ortiz, J., … Seal, S. (2016). Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environmental Toxicology, 32(3), 904-917. doi:10.1002/tox.22290 es_ES
dc.description.references Rim, K. T., Koo, K. H., & Park, J. S. (2013). Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Safety and Health at Work, 4(1), 12-26. doi:10.5491/shaw.2013.4.1.12 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem