BOOTH, H., MAINDONALD, J., & SMITH, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325-336. doi:10.1080/00324720215935
Brouhns, N., Denuit, M., & Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31(3), 373-393. doi:10.1016/s0167-6687(02)00185-3
Lee, R., & Miller, T. (2001). Evaluating the performance of the lee-carter method for forecasting mortality. Demography, 38(4), 537-549. doi:10.1353/dem.2001.0036
[+]
BOOTH, H., MAINDONALD, J., & SMITH, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325-336. doi:10.1080/00324720215935
Brouhns, N., Denuit, M., & Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31(3), 373-393. doi:10.1016/s0167-6687(02)00185-3
Lee, R., & Miller, T. (2001). Evaluating the performance of the lee-carter method for forecasting mortality. Demography, 38(4), 537-549. doi:10.1353/dem.2001.0036
Cairns, A. J. G., Blake, D., & Dowd, K. (2006). A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk & Insurance, 73(4), 687-718. doi:10.1111/j.1539-6975.2006.00195.x
Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., & Balevich, I. (2009). A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States. North American Actuarial Journal, 13(1), 1-35. doi:10.1080/10920277.2009.10597538
Renshaw, A. E., & Haberman, S. (2003). Lee–Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255-272. doi:10.1016/s0167-6687(03)00138-0
Renshaw, A. E., & Haberman, S. (2006). A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38(3), 556-570. doi:10.1016/j.insmatheco.2005.12.001
Hainaut, D. (2018). A NEURAL-NETWORK ANALYZER FOR MORTALITY FORECAST. ASTIN Bulletin, 48(02), 481-508. doi:10.1017/asb.2017.45
Levantesi, S., & Pizzorusso, V. (2019). Application of Machine Learning to Mortality Modeling and Forecasting. Risks, 7(1), 26. doi:10.3390/risks7010026
Pascariu, M. D., Lenart, A., & Canudas-Romo, V. (2019). The maximum entropy mortality model: forecasting mortality using statistical moments. Scandinavian Actuarial Journal, 2019(8), 661-685. doi:10.1080/03461238.2019.1596974
S̀liwka, P., & Socha, L. (2018). A proposition of generalized stochastic Milevsky–Promislov mortality models. Scandinavian Actuarial Journal, 2018(8), 706-726. doi:10.1080/03461238.2018.1431805
Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145-153. doi:10.1016/j.rse.2018.02.026
Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), 3301-3307. doi:10.1093/bioinformatics/bti499
Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4(none). doi:10.1214/09-ss054
Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. doi:10.1111/j.2517-6161.1974.tb00994.x
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120, 70-83. doi:10.1016/j.csda.2017.11.003
Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1). doi:10.1214/aos/1176344552
Brouhns, N., Denuit *, M., & Van Keilegom, I. (2005). Bootstrapping the Poisson log-bilinear model for mortality forecasting. Scandinavian Actuarial Journal, 2005(3), 212-224. doi:10.1080/03461230510009754
D’Amato, V., Haberman, S., Piscopo, G., & Russolillo, M. (2012). Modelling dependent data for longevity projections. Insurance: Mathematics and Economics, 51(3), 694-701. doi:10.1016/j.insmatheco.2012.09.008
Debón, A., Martínez-Ruiz, F., & Montes, F. (2012). Temporal Evolution of Mortality Indicators. North American Actuarial Journal, 16(3), 364-377. doi:10.1080/10920277.2012.10590647
Debón, A., Montes, F., Mateu, J., Porcu, E., & Bevilacqua, M. (2008). Modelling residuals dependence in dynamic life tables: A geostatistical approach. Computational Statistics & Data Analysis, 52(6), 3128-3147. doi:10.1016/j.csda.2007.08.006
Koissi, M.-C., Shapiro, A. F., & Högnäs, G. (2006). Evaluating and extending the Lee–Carter model for mortality forecasting: Bootstrap confidence interval. Insurance: Mathematics and Economics, 38(1), 1-20. doi:10.1016/j.insmatheco.2005.06.008
Liu, X., & Braun, W. J. (2010). Investigating Mortality Uncertainty Using the Block Bootstrap. Journal of Probability and Statistics, 2010, 1-15. doi:10.1155/2010/813583
Härdle, W., Horowitz, J., & Kreiss, J. (2003). Bootstrap Methods for Time Series. International Statistical Review, 71(2), 435-459. doi:10.1111/j.1751-5823.2003.tb00485.x
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192-213. doi:10.1016/j.ins.2011.12.028
Booth, H., Hyndman, R. J., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demographic Research, 15, 289-310. doi:10.4054/demres.2006.15.9
Delwarde, A., Denuit, M., & Eilers, P. (2007). Smoothing the Lee–Carter and Poisson log-bilinear models for mortality forecasting. Statistical Modelling, 7(1), 29-48. doi:10.1177/1471082x0600700103
Debón, A., Montes, F., & Puig, F. (2008). Modelling and forecasting mortality in Spain. European Journal of Operational Research, 189(3), 624-637. doi:10.1016/j.ejor.2006.07.050
Currie, I. D., Durban, M., & Eilers, P. H. (2004). Smoothing and forecasting mortality rates. Statistical Modelling, 4(4), 279-298. doi:10.1191/1471082x04st080oa
Chen, K., Liao, J., Shang, X., & Li, J. S.-H. (2009). «A Quantitative Comparison of Stochastic Mortality Models Using Data from England and Wales and the United States,» Andrew J. G. Cairns, David Blake, Kevin Dowd, Guy D. Coughlan, David Epstein, Alen Ong, and Igor Balevich, Vol. 13, No. 1, 2009. North American Actuarial Journal, 13(4), 514-520. doi:10.1080/10920277.2009.10597572
Plat, R. (2009). On stochastic mortality modeling. Insurance: Mathematics and Economics, 45(3), 393-404. doi:10.1016/j.insmatheco.2009.08.006
Debón, A., Martínez-Ruiz, F., & Montes, F. (2010). A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities. Insurance: Mathematics and Economics, 47(3), 327-336. doi:10.1016/j.insmatheco.2010.07.007
Yang, S. S., Yue, J. C., & Huang, H.-C. (2010). Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. Insurance: Mathematics and Economics, 46(1), 254-270. doi:10.1016/j.insmatheco.2009.09.013
Haberman, S., & Renshaw, A. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48(1), 35-55. doi:10.1016/j.insmatheco.2010.09.003
Mitchell, D., Brockett, P., Mendoza-Arriaga, R., & Muthuraman, K. (2013). Modeling and forecasting mortality rates. Insurance: Mathematics and Economics, 52(2), 275-285. doi:10.1016/j.insmatheco.2013.01.002
Danesi, I. L., Haberman, S., & Millossovich, P. (2015). Forecasting mortality in subpopulations using Lee–Carter type models: A comparison. Insurance: Mathematics and Economics, 62, 151-161. doi:10.1016/j.insmatheco.2015.03.010
Yang, B., Li, J., & Balasooriya, U. (2014). Cohort extensions of the Poisson common factor model for modelling both genders jointly. Scandinavian Actuarial Journal, 2016(2), 93-112. doi:10.1080/03461238.2014.908411
Neves, C., Fernandes, C., & Hoeltgebaum, H. (2017). Five different distributions for the Lee–Carter model of mortality forecasting: A comparison using GAS models. Insurance: Mathematics and Economics, 75, 48-57. doi:10.1016/j.insmatheco.2017.04.004
University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany)www.mortality.org
Hunt, A., & Blake, D. P. (2015). Identifiability in Age/Period/Cohort Mortality Models. SSRN Electronic Journal. doi:10.2139/ssrn.3552213
Generalized Nonlinear Models in R: An Overview of the Gnm Packagehttps://cran.r-project.org/package=gnm
Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of Error Rates in Discriminant Analysis. Technometrics, 10(1), 1-11. doi:10.1080/00401706.1968.10490530
Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. International Journal of Forecasting, 16(4), 437-450. doi:10.1016/s0169-2070(00)00065-0
Diaz, G., Debón, A., & Giner-Bosch, V. (2018). Mortality forecasting in Colombia from abridged life tables by sex. Genus, 74(1). doi:10.1186/s41118-018-0038-6
Ahcan, A., Medved, D., Olivieri, A., & Pitacco, E. (2014). Forecasting mortality for small populations by mixing mortality data. Insurance: Mathematics and Economics, 54, 12-27. doi:10.1016/j.insmatheco.2013.10.013
FORSYTHE, A., & HARTICAN, J. A. (1970). Efficiency of confidence intervals generated by repeated subsample calculations. Biometrika, 57(3), 629-639. doi:10.1093/biomet/57.3.629
BURMAN, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3), 503-514. doi:10.1093/biomet/76.3.503
Shao, J. (1993). Linear Model Selection by Cross-validation. Journal of the American Statistical Association, 88(422), 486-494. doi:10.1080/01621459.1993.10476299
Li, H., & O’Hare, C. (2019). Mortality Forecasting: How Far Back Should We Look in Time? Risks, 7(1), 22. doi:10.3390/risks7010022
Breiman, L., & Spector, P. (1992). Submodel Selection and Evaluation in Regression. The X-Random Case. International Statistical Review / Revue Internationale de Statistique, 60(3), 291. doi:10.2307/1403680
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi:10.1109/tac.1974.1100705
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2). doi:10.1214/aos/1176344136
Hunt, A., & Blake, D. (2014). A General Procedure for Constructing Mortality Models. North American Actuarial Journal, 18(1), 116-138. doi:10.1080/10920277.2013.852963
Moritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207. doi:10.32614/rj-2017-009
Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social Relationships and Mortality Risk: A Meta-analytic Review. PLoS Medicine, 7(7), e1000316. doi:10.1371/journal.pmed.1000316
[-]