- -

A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Bernabeu, Ana es_ES
dc.contributor.author Cabello, José Manuel es_ES
dc.contributor.author Ruiz, Francisco es_ES
dc.date.accessioned 2021-02-24T04:31:55Z
dc.date.available 2021-02-24T04:31:55Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162248
dc.description.abstract [EN] The evaluation of regional innovation performance through composite innovation indices can serve as a valuable tool for policy-making. While discussion on the best methodology to construct composite innovation indices continues, we are interested in deepening the use of reference levels and the aggregation issue. So far, additive aggregation methods are, largely, the most widespread aggregation rule, thus allowing for full compensability among single indicators. In this paper, we present an integrated assessment methodology to evaluate regional innovation performance using the Multi-Reference Point based Weak and Strong Composite Indicator (MRP-WSCI) approach, which allows defining reference levels and different degrees of compensability. As an example of application to the Regional Innovation Scoreboard, the proposed technique is developed to measure the innovation performance of Spain¿s regions taking into account Spanish and European reference levels. The main features of the proposed approach are: (i) absolute or relative reference levels could be previously defined by the decision maker; (ii) by establishing the reference levels, the resulting composite innovation index is an easy-to-interpret measure; and (iii) the non-compensatory strong composite indicator provides an additional layer of information for policy-making (iv) a visualization tool called Light-Diagram is proposed to track the specific strengths and weaknesses of the regions' innovation performance. es_ES
dc.description.sponsorship This research has been partially supported by the Spanish Ministry of Economy and Competitiveness (Project ECO2016-76567-C4-4-R), by the Regional Government of Andalucia (research group SEJ-417), and by the ERDF funds (Project UMA18-FEDERJA-065). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Regional innovation es_ES
dc.subject Composite indices es_ES
dc.subject Multi-criteria decision making es_ES
dc.subject Multi-reference point scheme es_ES
dc.subject Compensability es_ES
dc.subject Visualization tools es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8050797 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ECO2016-76567-C4-4-R/ES/BUSQUEDA DE LA EFICIENCIA Y SOSTENIBILIDAD DE LAS DECISIONES PUBLICAS: UN ENFOQUE MULTICRITERIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UMA//UMA18-FEDERJA-065/ES/Análisis multicriterio de problemas del ámbito social y medioambiental/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//SEJ-417/ES/Toma De Decisiones Con Criterios Multiples Y Su Aplic. Al Sector Publico/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Garcia-Bernabeu, A.; Cabello, JM.; Ruiz, F. (2020). A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain. Mathematics. 8(5):1-21. https://doi.org/10.3390/math8050797 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8050797 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\413113 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Universidad de Málaga es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hauser, C., Siller, M., Schatzer, T., Walde, J., & Tappeiner, G. (2018). Measuring regional innovation: A critical inspection of the ability of single indicators to shape technological change. Technological Forecasting and Social Change, 129, 43-55. doi:10.1016/j.techfore.2017.10.019 es_ES
dc.description.references Makkonen, T., & van der Have, R. P. (2012). Benchmarking regional innovative performance: composite measures and direct innovation counts. Scientometrics, 94(1), 247-262. doi:10.1007/s11192-012-0753-2 es_ES
dc.description.references Asheim, B. T., Smith, H. L., & Oughton, C. (2011). Regional Innovation Systems: Theory, Empirics and Policy. Regional Studies, 45(7), 875-891. doi:10.1080/00343404.2011.596701 es_ES
dc.description.references Buesa, M., Heijs, J., & Baumert, T. (2010). The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach. Research Policy, 39(6), 722-735. doi:10.1016/j.respol.2010.02.016 es_ES
dc.description.references Di Cagno, D., Fabrizi, A., Meliciani, V., & Wanzenböck, I. (2016). The impact of relational spillovers from joint research projects on knowledge creation across European regions. Technological Forecasting and Social Change, 108, 83-94. doi:10.1016/j.techfore.2016.04.021 es_ES
dc.description.references Capello, R., & Lenzi, C. (2012). Territorial patterns of innovation: a taxonomy of innovative regions in Europe. The Annals of Regional Science, 51(1), 119-154. doi:10.1007/s00168-012-0539-8 es_ES
dc.description.references Navarro, M., Gibaja, J. J., Bilbao-Osorio, B., & Aguado, R. (2009). Patterns of Innovation in EU-25 Regions: A Typology and Policy Recommendations. Environment and Planning C: Government and Policy, 27(5), 815-840. doi:10.1068/c0884r es_ES
dc.description.references Pinto, H. (2009). The Diversity of Innovation in the European Union: Mapping Latent Dimensions and Regional Profiles. European Planning Studies, 17(2), 303-326. doi:10.1080/09654310802553571 es_ES
dc.description.references Ruiz, F., El Gibari, S., Cabello, J. M., & Gómez, T. (2020). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega, 95, 102060. doi:10.1016/j.omega.2019.04.003 es_ES
dc.description.references Hollenstein, H. (1996). A composite indicator of a firm’s innovativeness. An empirical analysis based on survey data for Swiss manufacturing. Research Policy, 25(4), 633-645. doi:10.1016/0048-7333(95)00874-8 es_ES
dc.description.references Gu *, W., & Tang, J. (2004). Link between innovation and productivity in Canadian manufacturing industries. Economics of Innovation and New Technology, 13(7), 671-686. doi:10.1080/1043890410001686806 es_ES
dc.description.references Tang, J., & Le, C. D. (2007). Multidimensional Innovation and Productivity. Economics of Innovation and New Technology, 16(7), 501-516. doi:10.1080/10438590600914585 es_ES
dc.description.references Kumar, S., Haleem, A., & Sushil. (2019). Assessing innovativeness of manufacturing firms using an intuitionistic fuzzy based MCDM framework. Benchmarking: An International Journal, 26(6), 1823-1844. doi:10.1108/bij-12-2017-0343 es_ES
dc.description.references Grupp, H., & Mogee, M. E. (2004). Indicators for national science and technology policy: how robust are composite indicators? Research Policy, 33(9), 1373-1384. doi:10.1016/j.respol.2004.09.007 es_ES
dc.description.references Schibany, A., & Streicher, G. (2008). The European Innovation Scoreboard: drowning by numbers? Science and Public Policy, 35(10), 717-732. doi:10.3152/030234208x398512 es_ES
dc.description.references Kozłowski, J. (2015). Innovation indices: the need for positioning them where they properly belong. Scientometrics, 104(3), 609-628. doi:10.1007/s11192-015-1632-4 es_ES
dc.description.references Carayannis, E. G., Goletsis, Y., & Grigoroudis, E. (2018). Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework. Technological Forecasting and Social Change, 131, 4-17. doi:10.1016/j.techfore.2017.03.008 es_ES
dc.description.references Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141(1), 61-94. doi:10.1007/s11205-017-1832-9 es_ES
dc.description.references El Gibari, S., Gómez, T., & Ruiz, F. (2018). Building composite indicators using multicriteria methods: a review. Journal of Business Economics, 89(1), 1-24. doi:10.1007/s11573-018-0902-z es_ES
dc.description.references Ruiz, F., Cabello, J. M., & Luque, M. (2011). An application of reference point techniques to the calculation of synthetic sustainability indicators. Journal of the Operational Research Society, 62(1), 189-197. doi:10.1057/jors.2009.187 es_ES
dc.description.references Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031 es_ES
dc.description.references Ruiz, F., Cabello, J. M., & Pérez-Gladish, B. (2018). Building Ease-of-Doing-Business synthetic indicators using a double reference point approach. Technological Forecasting and Social Change, 131, 130-140. doi:10.1016/j.techfore.2017.06.005 es_ES
dc.description.references El Gibari, S., Gómez, T., & Ruiz, F. (2018). Evaluating university performance using reference point based composite indicators. Journal of Informetrics, 12(4), 1235-1250. doi:10.1016/j.joi.2018.10.003 es_ES
dc.description.references Mazziotta, M., & Pareto, A. (2017). Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices. Social Indicators Research, 136(3), 967-976. doi:10.1007/s11205-017-1577-5 es_ES
dc.description.references Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523. doi:10.1080/00036840601019364 es_ES
dc.description.references Cabello, J. M., Navarro, E., Prieto, F., Rodríguez, B., & Ruiz, F. (2014). Multicriteria development of synthetic indicators of the environmental profile of the Spanish regions. Ecological Indicators, 39, 10-23. doi:10.1016/j.ecolind.2013.11.013 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem