Mostrar el registro sencillo del ítem
dc.contributor.author | Lamprou, Efthymios | es_ES |
dc.contributor.author | Sánchez Martínez, Filomeno | es_ES |
dc.contributor.author | Benlloch Baviera, Jose María | es_ES |
dc.contributor.author | González Martínez, Antonio Javier | es_ES |
dc.date.accessioned | 2021-02-24T04:32:09Z | |
dc.date.available | 2021-02-24T04:32:09Z | |
dc.date.issued | 2020-10-11 | es_ES |
dc.identifier.issn | 0168-9002 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162256 | |
dc.description.abstract | [EN] In recent years high efforts have been devoted to enhance spatial and temporal resolutions of PET detectors. However, accurately combining these two main features is, in most of the cases, challenging. Typically, a compromise has to be made between the number of readout channels, scintillator type and size, and photosensors arrangement if aiming for a good system performance, while keeping a moderate cost. In this work, we have studied several detector configurations for PET based on a set of 8x8 Silicon Photomultiplier (SiPMs) of 3x3 mm(2) active area, and LYSO crystal arrays with different pixel sizes. An exhaustive evaluation in terms of spatial, energy and timing resolution was made for all detector configurations. In some cases, when using pixel sizes different than SiPM active area, a significant amount of scintillation light may spread among several SiPMs. Therefore, we made use of a calibration method considering the different SiPM timing contributions. Best Detector Time Resolution (DTR) of 156 ps FWHM was measured when using 3x3 mm(2) crystal pixels directly coupled to the 3x3 mm(2) SiPMs. However, when using 1.5 mm crystal pixels with the same photosensor array, although we could clearly resolve all crystal pixels, an average DTR of 250 ps FWHM was achieved. We also shed light in this work on the timing dependency of the crystal pixel and photosensor alignment. | es_ES |
dc.description.sponsorship | This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 695536) and by the Spanish Ministerio de Economia, Industria y Competitividad under Grant TEC2016-79884-C2-1-R. The first author has also been supported by Generalitat Valenciana, Spain under grant agreement GRISOLIAP-2018-026. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | TOF-PET | es_ES |
dc.subject | ASIC | es_ES |
dc.subject | Time walk | es_ES |
dc.subject | Crystal arrays | es_ES |
dc.subject | SiPM | es_ES |
dc.subject | Timing resolution | es_ES |
dc.title | In-depth evaluation of TOF-PET detectors based on crystal arrays and the TOFPET2 ASIC | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.nima.2020.164295 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-1-R/ES/DESARROLLO DEL HARDWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE ESTRES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F026/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Lamprou, E.; Sánchez Martínez, F.; Benlloch Baviera, JM.; González Martínez, AJ. (2020). In-depth evaluation of TOF-PET detectors based on crystal arrays and the TOFPET2 ASIC. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 977:1-8. https://doi.org/10.1016/j.nima.2020.164295 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.nima.2020.164295 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 977 | es_ES |
dc.relation.pasarela | S\415205 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Jones, T., & Townsend, D. (2017). History and future technical innovation in positron emission tomography. Journal of Medical Imaging, 4(1), 011013. doi:10.1117/1.jmi.4.1.011013 | es_ES |
dc.description.references | Surti, S. (2014). Update on Time-of-Flight PET Imaging. Journal of Nuclear Medicine, 56(1), 98-105. doi:10.2967/jnumed.114.145029 | es_ES |
dc.description.references | Lecoq, P. (2017). Pushing the Limits in Time-of-Flight PET Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(6), 473-485. doi:10.1109/trpms.2017.2756674 | es_ES |
dc.description.references | Surti, S., & Karp, J. S. (2016). Advances in time-of-flight PET. Physica Medica, 32(1), 12-22. doi:10.1016/j.ejmp.2015.12.007 | es_ES |
dc.description.references | Gundacker, S., Auffray, E., Pauwels, K., & Lecoq, P. (2016). Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Physics in Medicine and Biology, 61(7), 2802-2837. doi:10.1088/0031-9155/61/7/2802 | es_ES |
dc.description.references | González-Montoro, A., Sánchez, F., Bruyndonckx, P., Cañizares, G., Benlloch, J. M., & González, A. J. (2019). Novel method to measure the intrinsic spatial resolution in PET detectors based on monolithic crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 920, 58-67. doi:10.1016/j.nima.2018.12.056 | es_ES |
dc.description.references | Moses, W. W. (2011). Fundamental limits of spatial resolution in PET. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 648, S236-S240. doi:10.1016/j.nima.2010.11.092 | es_ES |
dc.description.references | Lamprou, E., Gonzalez, A. J., Sanchez, F., & Benlloch, J. M. (2020). Exploring TOF capabilities of PET detector blocks based on large monolithic crystals and analog SiPMs. Physica Medica, 70, 10-18. doi:10.1016/j.ejmp.2019.12.004 | es_ES |
dc.description.references | Lamprou, E., Aguilar, A., González-Montoro, A., Monzó, J. M., Cañizares, G., Iranzo, S., … Benlloch, J. M. (2018). PET detector block with accurate 4D capabilities. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 132-136. doi:10.1016/j.nima.2017.11.002 | es_ES |
dc.description.references | A. Di Francesco, R. Bugalho, L. Oliveira, L. Pacher, A. Rivetti, M. Rolo, et al. TOFPET2: A high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications, J. Instrum. 11 (03) C03042. | es_ES |
dc.description.references | Van Dam, H. T., Borghi, G., Seifert, S., & Schaart, D. R. (2013). Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation. Physics in Medicine and Biology, 58(10), 3243-3257. doi:10.1088/0031-9155/58/10/3243 | es_ES |
dc.description.references | V. Nadig, D. Schug, B. Weissler, V. Schulz, Evaluation Of The PETsys TOFPET2 ASIC In Multi-Channel Coincidence Experiments, arXiv:1911.08156. | es_ES |
dc.description.references | Gundacker, S., Turtos, R. M., Auffray, E., Paganoni, M., & Lecoq, P. (2019). High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET. Physics in Medicine & Biology, 64(5), 055012. doi:10.1088/1361-6560/aafd52 | es_ES |
dc.description.references | Gundacker, S., Acerbi, F., Auffray, E., Ferri, A., Gola, A., Nemallapudi, M. V., … Lecoq, P. (2016). State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. Journal of Instrumentation, 11(08), P08008-P08008. doi:10.1088/1748-0221/11/08/p08008 | es_ES |