Mostrar el registro sencillo del ítem
dc.contributor.author | Berbegal Martinez, Monica | es_ES |
dc.contributor.author | Ramón-Albalat, Antonio | es_ES |
dc.contributor.author | León Santana, Maela | es_ES |
dc.contributor.author | Armengol Fortí, Josep | es_ES |
dc.date.accessioned | 2021-02-25T04:49:12Z | |
dc.date.available | 2021-02-25T04:49:12Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 1526-498X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162360 | |
dc.description | This is the peer reviewed version of the following article: Berbegal, M., Ramón¿Albalat, A., León, M. and Armengol, J. (2020), Evaluation of long¿term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest. Manag. Sci., 76: 967-977, which has been published in final form at https://doi.org/10.1002/ps.5605. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] BACKGROUND Fungal grapevine trunk diseases (GTDs) represent a threat to viticulture, being responsible for important economic losses worldwide. Nursery and vineyard experiments were set up to evaluate the ability of Trichoderma atroviride SC1 to reduce infections of GTD pathogens in grapevine planting material during the propagation process and to assess the long-term protection provided by this biocontrol agent on grapevine plants in young vineyards during two growing seasons. RESULTS Reductions of some GTD pathogen incidence and severity were found on grapevine propagation material after nursery application of T. atroviride SC1 during the grafting process, and also after additional T. atroviride SC1 treatments performed during two growing seasons in young vineyards, when compared with untreated plants. CONCLUSION Trichoderma atroviride SC1 showed promise to reduce infections caused by some GTD pathogens in nurseries, and also when establishing new vineyards. This biological control agent could possibly be a valuable component in an integrated management approach where various strategies are combined to reduce GTD infections. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Pest Management Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biocontrol | es_ES |
dc.subject | Black-foot | es_ES |
dc.subject | Botryosphaeria dieback | es_ES |
dc.subject | Petri disease | es_ES |
dc.subject | Vitis vinifera L | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/ps.5605 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Berbegal Martinez, M.; Ramón-Albalat, A.; León Santana, M.; Armengol Fortí, J. (2020). Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science. 76(3):967-977. https://doi.org/10.1002/ps.5605 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/ps.5605 | es_ES |
dc.description.upvformatpinicio | 967 | es_ES |
dc.description.upvformatpfin | 977 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 76 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 31472038 | es_ES |
dc.relation.pasarela | S\403015 | es_ES |
dc.description.references | Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-fe | es_ES |
dc.description.references | Mondello, V., Songy, A., Battiston, E., Pinto, C., Coppin, C., Trotel-Aziz, P., … Fontaine, F. (2018). Grapevine Trunk Diseases: A Review of Fifteen Years of Trials for Their Control with Chemicals and Biocontrol Agents. Plant Disease, 102(7), 1189-1217. doi:10.1094/pdis-08-17-1181-fe | es_ES |
dc.description.references | Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025 | es_ES |
dc.description.references | Kaplan, J., Travadon, R., Cooper, M., Hillis, V., Lubell, M., & Baumgartner, K. (2016). Identifying economic hurdles to early adoption of preventative practices: The case of trunk diseases in California winegrape vineyards. Wine Economics and Policy, 5(2), 127-141. doi:10.1016/j.wep.2016.11.001 | es_ES |
dc.description.references | Úrbez-Torres, J. R., & Gubler, W. D. (2010). Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology, 60(2), 261-270. doi:10.1111/j.1365-3059.2010.02381.x | es_ES |
dc.description.references | Eskalen, A., Feliciano, A. J., & Gubler, W. D. (2007). Susceptibility of Grapevine Pruning Wounds and Symptom Development in Response to Infection by Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Plant Disease, 91(9), 1100-1104. doi:10.1094/pdis-91-9-1100 | es_ES |
dc.description.references | Elena, G., & Luque, J. (2016). Seasonal Susceptibility of Grapevine Pruning Wounds and Cane Colonization in Catalonia, Spain Following Artificial Infection with Diplodia seriata and Phaeomoniella chlamydospora. Plant Disease, 100(8), 1651-1659. doi:10.1094/pdis-10-15-1186-re | es_ES |
dc.description.references | Díaz, G. A., & Latorre, B. A. (2013). Efficacy of paste and liquid fungicide formulations to protect pruning wounds against pathogens associated with grapevine trunk diseases in Chile. Crop Protection, 46, 106-112. doi:10.1016/j.cropro.2013.01.001 | es_ES |
dc.description.references | Harman, G. E., & Kubicek, C. P. (Eds.). (1998). Trichoderma And Gliocladium, Volume 2. doi:10.1201/9781482267945 | es_ES |
dc.description.references | Harman, G. E. (2000). Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377-393. doi:10.1094/pdis.2000.84.4.377 | es_ES |
dc.description.references | Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology, 52(4), 522-529. doi:10.1007/s12088-012-0308-5 | es_ES |
dc.description.references | Rajesh, R. W., Rahul, M. S., & Ambalal, N. S. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952-1965. doi:10.5897/ajar2015.10584 | es_ES |
dc.description.references | Harman, G. E. (2006). Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology®, 96(2), 190-194. doi:10.1094/phyto-96-0190 | es_ES |
dc.description.references | Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 52(1), 347-375. doi:10.1146/annurev-phyto-082712-102340 | es_ES |
dc.description.references | Van Wees, S. C., Van der Ent, S., & Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11(4), 443-448. doi:10.1016/j.pbi.2008.05.005 | es_ES |
dc.description.references | Berlanas, C., Andrés-Sodupe, M., López-Manzanares, B., Maldonado-González, M. M., & Gramaje, D. (2018). Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine. Pest Management Science, 74(12), 2864-2873. doi:10.1002/ps.5078 | es_ES |
dc.description.references | Fourie, P. H., & Halleen, F. (2006). Chemical and biological protection of grapevine propagation material from trunk disease pathogens. European Journal of Plant Pathology, 116(4), 255-265. doi:10.1007/s10658-006-9057-9 | es_ES |
dc.description.references | Dissanayake, A. (2016). Botryosphaeriaceae: Current status of genera and species. Mycosphere, 7(7), 1001-1073. doi:10.5943/mycosphere/si/1b/13 | es_ES |
dc.description.references | Mostert, L., Groenewald, J. Z., Summerbell, R. C., Gams, W., & Crous, P. W. (2006). Taxonomy and Pathology of Togninia (Diaporthales) and its Phaeoacremonium Anamorphs. Studies in Mycology, 54, 1-113. doi:10.3114/sim.54.1.1 | es_ES |
dc.description.references | GARDES, M., & BRUNS, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. doi:10.1111/j.1365-294x.1993.tb00005.x | es_ES |
dc.description.references | Travadon, R., Lawrence, D. P., Rooney-Latham, S., Gubler, W. D., Wilcox, W. F., Rolshausen, P. E., & Baumgartner, K. (2015). Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology, 119(1), 53-66. doi:10.1016/j.funbio.2014.11.002 | es_ES |
dc.description.references | O’Donnell, K., & Cigelnik, E. (1997). Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the FungusFusariumAre Nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103-116. doi:10.1006/mpev.1996.0376 | es_ES |
dc.description.references | Jacobs, K., Bergdahl, D. R., Wingfield, M. J., Halik, S., Seifert, K. A., Bright, D. E., & Wingfield, B. D. (2004). Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycological Research, 108(4), 411-418. doi:10.1017/s0953756204009748 | es_ES |
dc.description.references | Savazzini, F., Longa, C. M. O., Pertot, I., & Gessler, C. (2008). Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. Journal of Microbiological Methods, 73(2), 185-194. doi:10.1016/j.mimet.2008.02.004 | es_ES |
dc.description.references | Longa, C. M. O., Pertot, I., & Tosi, S. (2008). Ecophysiological requirements and survival of aTrichoderma atrovirideisolate with biocontrol potential. Journal of Basic Microbiology, 48(4), 269-277. doi:10.1002/jobm.200700396 | es_ES |
dc.description.references | Úrbez-Torres, J. R., Haag, P., Bowen, P., Lowery, T., & O’Gorman, D. T. (2015). Development of a DNA Macroarray for the Detection and Identification of Fungal Pathogens Causing Decline of Young Grapevines. Phytopathology®, 105(10), 1373-1388. doi:10.1094/phyto-03-15-0069-r | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |