Mostrar el registro sencillo del ítem
dc.contributor.author | Santamaría-Holek, Iván | es_ES |
dc.contributor.author | Ledesma-Duran, Aldo | es_ES |
dc.contributor.author | Hernández, S. I. | es_ES |
dc.contributor.author | García-Alcántara, C. | es_ES |
dc.contributor.author | Andrio, Andreu | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.date.accessioned | 2021-02-25T04:49:26Z | |
dc.date.available | 2021-02-25T04:49:26Z | |
dc.date.issued | 2020-01-14 | es_ES |
dc.identifier.issn | 1463-9076 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162366 | |
dc.description.abstract | [EN] The crystallographic structure of solid electrolytes and other materials determines the protonic conductivity in devices such as fuel cells, ionic-conductors, and supercapacitors. Experiments show that a rise of the temperature in a narrow interval may lead to a sudden increase of several orders of magnitude of the conductivity of some materials, a process called a superprotonic transition. Here, we use a novel macro-transport theory for irregular domains to show that the change of entropic restrictions associated with solid-solid phase or structural transitions controls the sudden change of the ionic conductivity when the superprotonic transition takes place. Specifically, we deduce a general formula for the temperature dependence on the ionic conductivity that fits remarkably well experimental data of superprotonic transitions in doped cesium phosphates and other materials reported in the literature. | es_ES |
dc.description.sponsorship | ISH, SIH, CGA and ALD acknowledge financial support from UNAM-DGAPA under grants IN116617, IN117419 and IA104319. V. Compan is grateful to the Ministerio de Economia y Competitividad (MINECO), project reference: ENE/2015-69203-R. SIH is grateful to project LANCAD-UNAM-DGTIC-276. ALD acknowledges DGAPA-UNAM CJIC/CTIC/4692/2019. ISH acknowledges Prof. Vi ' ctor Castano for his hospitality during sabbatical leave in which this work was finished. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Entropic restrictions control the electric conductance of superprotonic ionic solids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9cp05486c | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//CJIC%2FCTIC%2F4692%2F2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//IN116617/ES/Termodinámica de no equilibrio de sistemas pequeños autoconfinados (continuación)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//IN117419/MX/Termodinámica irreversible de sistemas electroquímicos y complejos./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100919/MX/Homogeneización y cálculo de propiedades efectivas de materiales compuestos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM//LANCAD-UNAM-DGTIC-276/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Santamaría-Holek, I.; Ledesma-Duran, A.; Hernández, SI.; García-Alcántara, C.; Andrio, A.; Compañ Moreno, V. (2020). Entropic restrictions control the electric conductance of superprotonic ionic solids. Physical Chemistry Chemical Physics. 22(2):437-445. https://doi.org/10.1039/c9cp05486c | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9cp05486c | es_ES |
dc.description.upvformatpinicio | 437 | es_ES |
dc.description.upvformatpfin | 445 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 31799568 | es_ES |
dc.relation.pasarela | S\425647 | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A., & Uda, T. (2007). Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss., 134, 17-39. doi:10.1039/b604311a | es_ES |
dc.description.references | Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 | es_ES |
dc.description.references | Zangmeister, C. D., & Pemberton, J. E. (2007). Phase transition between two anhydrous modifications of NaHSO4 mediated by heat and water. Journal of Solid State Chemistry, 180(6), 1826-1831. doi:10.1016/j.jssc.2007.03.028 | es_ES |
dc.description.references | Baranov, A. I., Khiznichenko, V. P., & Shuvalov, L. A. (1989). High temperature phase transitions and proton conductivity in some kdp-family crystals. Ferroelectrics, 100(1), 135-141. doi:10.1080/00150198908007907 | es_ES |
dc.description.references | Baranov, A. I., Khiznichenko, V. P., Sandler, V. A., & Shuvalov, L. A. (1988). Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics, 81(1), 183-186. doi:10.1080/00150198808008840 | es_ES |
dc.description.references | Baranov, A. (1989). Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid State Ionics, 36(3-4), 279-282. doi:10.1016/0167-2738(89)90191-4 | es_ES |
dc.description.references | Chisholm, C. (2000). Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system. Solid State Ionics, 136-137(1-2), 229-241. doi:10.1016/s0167-2738(00)00315-5 | es_ES |
dc.description.references | Bagryantseva, I. N., & Ponomareva, V. G. (2016). Proton conductivity and phase composition of mixed salts in the systems MH2PO4–CsHSO4 (M = Cs, K). Physics of the Solid State, 58(8), 1651-1658. doi:10.1134/s1063783416080047 | es_ES |
dc.description.references | Otomo, J., Ishigooka, T., Kitano, T., Takahashi, H., & Nagamoto, H. (2008). Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites. Electrochimica Acta, 53(28), 8186-8195. doi:10.1016/j.electacta.2008.06.018 | es_ES |
dc.description.references | Li, Z. (2010). Impedance analysis and protonic conduction mechanism in RbH2PO4/SiO2 composite systems. Electrochimica Acta, 55(24), 7298-7304. doi:10.1016/j.electacta.2010.07.006 | es_ES |
dc.description.references | Andrio, A., Hernández, S. I., García-Alcántara, C., del Castillo, L. F., Compañ, V., & Santamaría-Holek, I. (2019). Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Physical Chemistry Chemical Physics, 21(24), 12948-12960. doi:10.1039/c8cp07472k | es_ES |
dc.description.references | Montes, J. M., Cuevas, F. G., & Cintas, J. (2008). Porosity effect on the electrical conductivity of sintered powder compacts. Applied Physics A, 92(2), 375-380. doi:10.1007/s00339-008-4534-y | es_ES |
dc.description.references | Liu, M., Chen, L., Lewis, S., Chong, S. Y., Little, M. A., Hasell, T., … Cooper, A. I. (2016). Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 7(1). doi:10.1038/ncomms12750 | es_ES |
dc.description.references | Ledesma-Durán, A., Hernández, S. I., & Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. I. Local Kinetics. The Journal of Physical Chemistry C, 121(27), 14544-14556. doi:10.1021/acs.jpcc.7b03652 | es_ES |
dc.description.references | Ledesma-Durán, A., Hernández, S. I., & Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. The Journal of Physical Chemistry C, 121(27), 14557-14565. doi:10.1021/acs.jpcc.7b03653 | es_ES |
dc.description.references | Jiráak, Z., Dlouhá, M., Vratislav, S., Balagurov, A. M., Beskrovnyi, A. I., Gordelii, V. I., … Shwalov, L. A. (1987). A neutron diffraction study of the superionic phase in CsHSO4. Physica Status Solidi (a), 100(2), K117-K122. doi:10.1002/pssa.2211000240 | es_ES |
dc.description.references | Zwanzig, R. (1992). Diffusion past an entropy barrier. The Journal of Physical Chemistry, 96(10), 3926-3930. doi:10.1021/j100189a004 | es_ES |
dc.description.references | Reguera, D., & Rubí, J. M. (2001). Kinetic equations for diffusion in the presence of entropic barriers. Physical Review E, 64(6). doi:10.1103/physreve.64.061106 | es_ES |
dc.description.references | Goychuk, I. (2018). Viscoelastic subdiffusion in a random Gaussian environment. Physical Chemistry Chemical Physics, 20(37), 24140-24155. doi:10.1039/c8cp05238g | es_ES |
dc.description.references | Híjar, H., Méndez-Bermúdez, J. G., & Santamaría-Holek, I. (2010). Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation. The Journal of Chemical Physics, 132(8), 084502. doi:10.1063/1.3314728 | es_ES |
dc.description.references | Hernandez, R., & Somer, F. L. (1999). Stochastic Dynamics in Irreversible Nonequilibrium Environments. 1. The Fluctuation−Dissipation Relation. The Journal of Physical Chemistry B, 103(7), 1064-1069. doi:10.1021/jp983625g | es_ES |
dc.description.references | Zwanzig, R. (1970). Dielectric Friction on a Moving Ion. II. Revised Theory. The Journal of Chemical Physics, 52(7), 3625. doi:10.1063/1.1673535 | es_ES |
dc.description.references | Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z | es_ES |
dc.description.references | Eyring, H. (1935). The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3(2), 107-115. doi:10.1063/1.1749604 | es_ES |
dc.description.references | Goychuk, I. (2017). Quantum ergodicity breaking in semi-classical electron transfer dynamics. Physical Chemistry Chemical Physics, 19(4), 3056-3066. doi:10.1039/c6cp07206b | es_ES |
dc.description.references | Palma-Aramburu, N., & Santamaría-Holek, I. (2017). Entropy production and energy dissipation in symmetric redox supercapacitors. Physical Review E, 96(2). doi:10.1103/physreve.96.022103 | es_ES |
dc.description.references | Santamaría-Holek, I., Grzywna, Z. J., & Rubi, J. M. (2013). Entropic effects in diffusion-adsorption processes in micropores. The European Physical Journal Special Topics, 222(1), 129-141. doi:10.1140/epjst/e2013-01831-2 | es_ES |
dc.description.references | Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 | es_ES |
dc.description.references | Walder, J., & Nur, A. (1984). Porosity reduction and crustal pore pressure development. Journal of Geophysical Research: Solid Earth, 89(B13), 11539-11548. doi:10.1029/jb089ib13p11539 | es_ES |
dc.description.references | Nikiforov, A. V., Berg, R. W., & Bjerrum, N. J. (2018). Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C. Ionics, 24(9), 2761-2782. doi:10.1007/s11581-017-2420-3 | es_ES |
dc.description.references | Otomo, J., Tamaki, T., Nishida, S., Wang, S., Ogura, M., Kobayashi, T., … Takahashi, H. (2005). Effect of water vapor on proton conduction of cesium dihydrogen phosphateand application to intermediate temperature fuel cells. Journal of Applied Electrochemistry, 35(9), 865-870. doi:10.1007/s10800-005-4727-4 | es_ES |
dc.description.references | Ponomareva, V. G., Shutova, E. S., & Lavrova, G. V. (2008). Electrical conductivity and thermal stability of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites. Inorganic Materials, 44(9), 1009-1014. doi:10.1134/s0020168508090185 | es_ES |
dc.description.references | Ponomareva, V. G., & Shutova, E. S. (2014). Electrical conductivity and structural properties of proton electrolytes based on CsH2PO4 and silicophosphate matrices with low phosphorus content. Inorganic Materials, 50(10), 1056-1062. doi:10.1134/s0020168514100136 | es_ES |
dc.description.references | Leal, J. H., Martinez, H., Martinez, I., Price, A. D., Goos, A. G., & Botez, C. E. (2018). Stability of the superprotonic conduction of (1-x)CsH2PO4/xSiO2 (0 ≤ x ≤ 0.3) composites under dry and humid environments. Materials Today Communications, 15, 11-17. doi:10.1016/j.mtcomm.2018.02.021 | es_ES |
dc.description.references | T. Mabuchi and T.Tokumasu , IEEE International Nanoelectronics Conference (INEC), 2014, pp. 1–3 | es_ES |
dc.description.references | Agarwal, M., & Chakravarty, C. (2009). Relationship between structure, entropy, and mobility in network-forming ionic melts. Physical Review E, 79(3). doi:10.1103/physreve.79.030202 | es_ES |
dc.description.references | Joseph, K., Stennett, M. C., Hyatt, N. C., Asuvathraman, R., Dube, C. L., Gandy, A. S., … Smith, R. (2017). Iron phosphate glasses: Bulk properties and atomic scale structure. Journal of Nuclear Materials, 494, 342-353. doi:10.1016/j.jnucmat.2017.07.015 | es_ES |
dc.description.references | L. F. del Castillo , S. I.Hernández and V.Compan , Membranes (Materials, Simulations and Applications) , Springer International Publishing , Switzerland , 2017 , ch. 9 | es_ES |