- -

Entropic restrictions control the electric conductance of superprotonic ionic solids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Entropic restrictions control the electric conductance of superprotonic ionic solids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santamaría-Holek, Iván es_ES
dc.contributor.author Ledesma-Duran, Aldo es_ES
dc.contributor.author Hernández, S. I. es_ES
dc.contributor.author García-Alcántara, C. es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2021-02-25T04:49:26Z
dc.date.available 2021-02-25T04:49:26Z
dc.date.issued 2020-01-14 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162366
dc.description.abstract [EN] The crystallographic structure of solid electrolytes and other materials determines the protonic conductivity in devices such as fuel cells, ionic-conductors, and supercapacitors. Experiments show that a rise of the temperature in a narrow interval may lead to a sudden increase of several orders of magnitude of the conductivity of some materials, a process called a superprotonic transition. Here, we use a novel macro-transport theory for irregular domains to show that the change of entropic restrictions associated with solid-solid phase or structural transitions controls the sudden change of the ionic conductivity when the superprotonic transition takes place. Specifically, we deduce a general formula for the temperature dependence on the ionic conductivity that fits remarkably well experimental data of superprotonic transitions in doped cesium phosphates and other materials reported in the literature. es_ES
dc.description.sponsorship ISH, SIH, CGA and ALD acknowledge financial support from UNAM-DGAPA under grants IN116617, IN117419 and IA104319. V. Compan is grateful to the Ministerio de Economia y Competitividad (MINECO), project reference: ENE/2015-69203-R. SIH is grateful to project LANCAD-UNAM-DGTIC-276. ALD acknowledges DGAPA-UNAM CJIC/CTIC/4692/2019. ISH acknowledges Prof. Vi ' ctor Castano for his hospitality during sabbatical leave in which this work was finished. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Entropic restrictions control the electric conductance of superprotonic ionic solids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cp05486c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//CJIC%2FCTIC%2F4692%2F2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN116617/ES/Termodinámica de no equilibrio de sistemas pequeños autoconfinados (continuación)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN117419/MX/Termodinámica irreversible de sistemas electroquímicos y complejos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100919/MX/Homogeneización y cálculo de propiedades efectivas de materiales compuestos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//LANCAD-UNAM-DGTIC-276/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Santamaría-Holek, I.; Ledesma-Duran, A.; Hernández, SI.; García-Alcántara, C.; Andrio, A.; Compañ Moreno, V. (2020). Entropic restrictions control the electric conductance of superprotonic ionic solids. Physical Chemistry Chemical Physics. 22(2):437-445. https://doi.org/10.1039/c9cp05486c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cp05486c es_ES
dc.description.upvformatpinicio 437 es_ES
dc.description.upvformatpfin 445 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 31799568 es_ES
dc.relation.pasarela S\425647 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A., & Uda, T. (2007). Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss., 134, 17-39. doi:10.1039/b604311a es_ES
dc.description.references Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 es_ES
dc.description.references Zangmeister, C. D., & Pemberton, J. E. (2007). Phase transition between two anhydrous modifications of NaHSO4 mediated by heat and water. Journal of Solid State Chemistry, 180(6), 1826-1831. doi:10.1016/j.jssc.2007.03.028 es_ES
dc.description.references Baranov, A. I., Khiznichenko, V. P., & Shuvalov, L. A. (1989). High temperature phase transitions and proton conductivity in some kdp-family crystals. Ferroelectrics, 100(1), 135-141. doi:10.1080/00150198908007907 es_ES
dc.description.references Baranov, A. I., Khiznichenko, V. P., Sandler, V. A., & Shuvalov, L. A. (1988). Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics, 81(1), 183-186. doi:10.1080/00150198808008840 es_ES
dc.description.references Baranov, A. (1989). Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid State Ionics, 36(3-4), 279-282. doi:10.1016/0167-2738(89)90191-4 es_ES
dc.description.references Chisholm, C. (2000). Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system. Solid State Ionics, 136-137(1-2), 229-241. doi:10.1016/s0167-2738(00)00315-5 es_ES
dc.description.references Bagryantseva, I. N., & Ponomareva, V. G. (2016). Proton conductivity and phase composition of mixed salts in the systems MH2PO4–CsHSO4 (M = Cs, K). Physics of the Solid State, 58(8), 1651-1658. doi:10.1134/s1063783416080047 es_ES
dc.description.references Otomo, J., Ishigooka, T., Kitano, T., Takahashi, H., & Nagamoto, H. (2008). Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites. Electrochimica Acta, 53(28), 8186-8195. doi:10.1016/j.electacta.2008.06.018 es_ES
dc.description.references Li, Z. (2010). Impedance analysis and protonic conduction mechanism in RbH2PO4/SiO2 composite systems. Electrochimica Acta, 55(24), 7298-7304. doi:10.1016/j.electacta.2010.07.006 es_ES
dc.description.references Andrio, A., Hernández, S. I., García-Alcántara, C., del Castillo, L. F., Compañ, V., & Santamaría-Holek, I. (2019). Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Physical Chemistry Chemical Physics, 21(24), 12948-12960. doi:10.1039/c8cp07472k es_ES
dc.description.references Montes, J. M., Cuevas, F. G., & Cintas, J. (2008). Porosity effect on the electrical conductivity of sintered powder compacts. Applied Physics A, 92(2), 375-380. doi:10.1007/s00339-008-4534-y es_ES
dc.description.references Liu, M., Chen, L., Lewis, S., Chong, S. Y., Little, M. A., Hasell, T., … Cooper, A. I. (2016). Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 7(1). doi:10.1038/ncomms12750 es_ES
dc.description.references Ledesma-Durán, A., Hernández, S. I., & Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. I. Local Kinetics. The Journal of Physical Chemistry C, 121(27), 14544-14556. doi:10.1021/acs.jpcc.7b03652 es_ES
dc.description.references Ledesma-Durán, A., Hernández, S. I., & Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. The Journal of Physical Chemistry C, 121(27), 14557-14565. doi:10.1021/acs.jpcc.7b03653 es_ES
dc.description.references Jiráak, Z., Dlouhá, M., Vratislav, S., Balagurov, A. M., Beskrovnyi, A. I., Gordelii, V. I., … Shwalov, L. A. (1987). A neutron diffraction study of the superionic phase in CsHSO4. Physica Status Solidi (a), 100(2), K117-K122. doi:10.1002/pssa.2211000240 es_ES
dc.description.references Zwanzig, R. (1992). Diffusion past an entropy barrier. The Journal of Physical Chemistry, 96(10), 3926-3930. doi:10.1021/j100189a004 es_ES
dc.description.references Reguera, D., & Rubí, J. M. (2001). Kinetic equations for diffusion in the presence of entropic barriers. Physical Review E, 64(6). doi:10.1103/physreve.64.061106 es_ES
dc.description.references Goychuk, I. (2018). Viscoelastic subdiffusion in a random Gaussian environment. Physical Chemistry Chemical Physics, 20(37), 24140-24155. doi:10.1039/c8cp05238g es_ES
dc.description.references Híjar, H., Méndez-Bermúdez, J. G., & Santamaría-Holek, I. (2010). Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation. The Journal of Chemical Physics, 132(8), 084502. doi:10.1063/1.3314728 es_ES
dc.description.references Hernandez, R., & Somer, F. L. (1999). Stochastic Dynamics in Irreversible Nonequilibrium Environments. 1. The Fluctuation−Dissipation Relation. The Journal of Physical Chemistry B, 103(7), 1064-1069. doi:10.1021/jp983625g es_ES
dc.description.references Zwanzig, R. (1970). Dielectric Friction on a Moving Ion. II. Revised Theory. The Journal of Chemical Physics, 52(7), 3625. doi:10.1063/1.1673535 es_ES
dc.description.references Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z es_ES
dc.description.references Eyring, H. (1935). The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3(2), 107-115. doi:10.1063/1.1749604 es_ES
dc.description.references Goychuk, I. (2017). Quantum ergodicity breaking in semi-classical electron transfer dynamics. Physical Chemistry Chemical Physics, 19(4), 3056-3066. doi:10.1039/c6cp07206b es_ES
dc.description.references Palma-Aramburu, N., & Santamaría-Holek, I. (2017). Entropy production and energy dissipation in symmetric redox supercapacitors. Physical Review E, 96(2). doi:10.1103/physreve.96.022103 es_ES
dc.description.references Santamaría-Holek, I., Grzywna, Z. J., & Rubi, J. M. (2013). Entropic effects in diffusion-adsorption processes in micropores. The European Physical Journal Special Topics, 222(1), 129-141. doi:10.1140/epjst/e2013-01831-2 es_ES
dc.description.references Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 es_ES
dc.description.references Walder, J., & Nur, A. (1984). Porosity reduction and crustal pore pressure development. Journal of Geophysical Research: Solid Earth, 89(B13), 11539-11548. doi:10.1029/jb089ib13p11539 es_ES
dc.description.references Nikiforov, A. V., Berg, R. W., & Bjerrum, N. J. (2018). Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400 °C. Ionics, 24(9), 2761-2782. doi:10.1007/s11581-017-2420-3 es_ES
dc.description.references Otomo, J., Tamaki, T., Nishida, S., Wang, S., Ogura, M., Kobayashi, T., … Takahashi, H. (2005). Effect of water vapor on proton conduction of cesium dihydrogen phosphateand application to intermediate temperature fuel cells. Journal of Applied Electrochemistry, 35(9), 865-870. doi:10.1007/s10800-005-4727-4 es_ES
dc.description.references Ponomareva, V. G., Shutova, E. S., & Lavrova, G. V. (2008). Electrical conductivity and thermal stability of (1 − x)CsH2PO4/xSiP y O z (x = 0.2–0.7) composites. Inorganic Materials, 44(9), 1009-1014. doi:10.1134/s0020168508090185 es_ES
dc.description.references Ponomareva, V. G., & Shutova, E. S. (2014). Electrical conductivity and structural properties of proton electrolytes based on CsH2PO4 and silicophosphate matrices with low phosphorus content. Inorganic Materials, 50(10), 1056-1062. doi:10.1134/s0020168514100136 es_ES
dc.description.references Leal, J. H., Martinez, H., Martinez, I., Price, A. D., Goos, A. G., & Botez, C. E. (2018). Stability of the superprotonic conduction of (1-x)CsH2PO4/xSiO2 (0 ≤ x ≤ 0.3) composites under dry and humid environments. Materials Today Communications, 15, 11-17. doi:10.1016/j.mtcomm.2018.02.021 es_ES
dc.description.references T. Mabuchi and T.Tokumasu , IEEE International Nanoelectronics Conference (INEC), 2014, pp. 1–3 es_ES
dc.description.references Agarwal, M., & Chakravarty, C. (2009). Relationship between structure, entropy, and mobility in network-forming ionic melts. Physical Review E, 79(3). doi:10.1103/physreve.79.030202 es_ES
dc.description.references Joseph, K., Stennett, M. C., Hyatt, N. C., Asuvathraman, R., Dube, C. L., Gandy, A. S., … Smith, R. (2017). Iron phosphate glasses: Bulk properties and atomic scale structure. Journal of Nuclear Materials, 494, 342-353. doi:10.1016/j.jnucmat.2017.07.015 es_ES
dc.description.references L. F. del Castillo , S. I.Hernández and V.Compan , Membranes (Materials, Simulations and Applications) , Springer International Publishing , Switzerland , 2017 , ch. 9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem