- -

Compact quasi-Newton preconditioners for symmetric positive definite linear systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compact quasi-Newton preconditioners for symmetric positive definite linear systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author BERGAMASCHI, LUCA es_ES
dc.contributor.author Marín Mateos-Aparicio, José es_ES
dc.contributor.author MARTINEZ, ANGELES es_ES
dc.date.accessioned 2021-02-25T04:49:42Z
dc.date.available 2021-02-25T04:49:42Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1070-5325 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162373
dc.description.abstract [EN] In this paper, preconditioners for the conjugate gradient method are studied to solve the Newton system with symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of Symmetric Rank one (SR1) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) low-rank updates. We develop conditions under which the SR1 update maintains the preconditioner symmetric positive definite. Spectral analysis of the SR1 preconditioned Jacobians shows an improved eigenvalue distribution as the Newton iteration proceeds. A compact matrix formulation of the preconditioner update is developed which reduces the cost of its application and is more suitable to parallel implementation. Some notes on the implementation of the corresponding Inexact Newton method are given and some numerical results on a number of model problems illustrate the efficiency of the proposed preconditioners. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad under grants MTM2014-58159-P, MTM2017-85669-P, and MTM2017-90682-REDT. The first and third authors have been also partially supported by the INdAM Research group GNCS, 2020 Project: Optimization and advanced linear algebra for problems arising from PDEs. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Numerical Linear Algebra with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conjugate gradient es_ES
dc.subject Inexact Newton method es_ES
dc.subject Quasi-Newton matrices es_ES
dc.subject Sequence of preconditioners es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Compact quasi-Newton preconditioners for symmetric positive definite linear systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nla.2322 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bergamaschi, L.; Marín Mateos-Aparicio, J.; Martinez, A. (2020). Compact quasi-Newton preconditioners for symmetric positive definite linear systems. Numerical Linear Algebra with Applications. 27(6):1-17. https://doi.org/10.1002/nla.2322 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/nla.2322 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\422728 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Bergamaschi, L., & Putti, M. (1999). Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation. International Journal for Numerical Methods in Engineering, 45(8), 1025-1046. doi:10.1002/(sici)1097-0207(19990720)45:8<1025::aid-nme615>3.0.co;2-g es_ES
dc.description.references Notay, Y. (2001). Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem. Numerical Linear Algebra with Applications, 9(1), 21-44. doi:10.1002/nla.246 es_ES
dc.description.references Bergamaschi, L., & Martínez, A. (2014). Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems. Optimization Methods and Software, 30(2), 301-322. doi:10.1080/10556788.2014.908878 es_ES
dc.description.references Bergamaschi, L., & Martínez, A. (2013). Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems. Journal of Applied Mathematics, 2013, 1-10. doi:10.1155/2013/767042 es_ES
dc.description.references Martinez, J. M. (1993). A Theory of Secant Preconditioners. Mathematics of Computation, 60(202), 681. doi:10.2307/2153109 es_ES
dc.description.references Morales, J. L., & Nocedal, J. (2000). Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM Journal on Optimization, 10(4), 1079-1096. doi:10.1137/s1052623497327854 es_ES
dc.description.references Nabben, R., & Vuik, C. (2006). A Comparison of Deflation and the Balancing Preconditioner. SIAM Journal on Scientific Computing, 27(5), 1742-1759. doi:10.1137/040608246 es_ES
dc.description.references Freitag, M. A., & Spence, A. (2007). A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA Journal of Numerical Analysis, 28(3), 522-551. doi:10.1093/imanum/drm036 es_ES
dc.description.references Martínez, Á. (2016). Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems. Numerical Linear Algebra with Applications, 23(3), 427-443. doi:10.1002/nla.2032 es_ES
dc.description.references Gratton, S., Sartenaer, A., & Tshimanga, J. (2011). On A Class of Limited Memory Preconditioners For Large Scale Linear Systems With Multiple Right-Hand Sides. SIAM Journal on Optimization, 21(3), 912-935. doi:10.1137/08074008 es_ES
dc.description.references Bergamaschi, L., Bru, R., & Martínez, A. (2011). Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian. Mathematical and Computer Modelling, 54(7-8), 1863-1873. doi:10.1016/j.mcm.2010.11.064 es_ES
dc.description.references DeGuchy, O., Erway, J. B., & Marcia, R. F. (2018). Compact representation of the full Broyden class of quasi‐Newton updates. Numerical Linear Algebra with Applications, 25(5). doi:10.1002/nla.2186 es_ES
dc.description.references Nocedal, J., & Wright, S. J. (Eds.). (1999). Numerical Optimization. Springer Series in Operations Research and Financial Engineering. doi:10.1007/b98874 es_ES
dc.description.references Dembo, R. S., Eisenstat, S. C., & Steihaug, T. (1982). Inexact Newton Methods. SIAM Journal on Numerical Analysis, 19(2), 400-408. doi:10.1137/0719025 es_ES
dc.description.references Kelley, C. T. (1999). Iterative Methods for Optimization. doi:10.1137/1.9781611970920 es_ES
dc.description.references Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Representations of quasi-Newton matrices and their use in limited memory methods. Mathematical Programming, 63(1-3), 129-156. doi:10.1007/bf01582063 es_ES
dc.description.references Bergamaschi, L. (2020). A Survey of Low-Rank Updates of Preconditioners for Sequences of Symmetric Linear Systems. Algorithms, 13(4), 100. doi:10.3390/a13040100 es_ES
dc.description.references Powers, R. T., & Størmer, E. (1970). Free states of the canonical anticommutation relations. Communications in Mathematical Physics, 16(1), 1-33. doi:10.1007/bf01645492 es_ES
dc.description.references Ipsen, I. C. F., & Nadler, B. (2009). Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices. SIAM Journal on Matrix Analysis and Applications, 31(1), 40-53. doi:10.1137/070682745 es_ES
dc.description.references Simoncini, V., & Eldén, L. (2002). Bit Numerical Mathematics, 42(1), 159-182. doi:10.1023/a:1021930421106 es_ES
dc.description.references G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427 es_ES
dc.description.references Tapia, R. A., Dennis, J. E., & Schäfermeyer, J. P. (2018). Inverse, Shifted Inverse, and Rayleigh Quotient Iteration as Newton’s Method. SIAM Review, 60(1), 3-55. doi:10.1137/15m1049956 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem