Mostrar el registro sencillo del ítem
dc.contributor.author | BERGAMASCHI, LUCA | es_ES |
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | MARTINEZ, ANGELES | es_ES |
dc.date.accessioned | 2021-02-25T04:49:42Z | |
dc.date.available | 2021-02-25T04:49:42Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 1070-5325 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162373 | |
dc.description.abstract | [EN] In this paper, preconditioners for the conjugate gradient method are studied to solve the Newton system with symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of Symmetric Rank one (SR1) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) low-rank updates. We develop conditions under which the SR1 update maintains the preconditioner symmetric positive definite. Spectral analysis of the SR1 preconditioned Jacobians shows an improved eigenvalue distribution as the Newton iteration proceeds. A compact matrix formulation of the preconditioner update is developed which reduces the cost of its application and is more suitable to parallel implementation. Some notes on the implementation of the corresponding Inexact Newton method are given and some numerical results on a number of model problems illustrate the efficiency of the proposed preconditioners. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia y Competitividad under grants MTM2014-58159-P, MTM2017-85669-P, and MTM2017-90682-REDT. The first and third authors have been also partially supported by the INdAM Research group GNCS, 2020 Project: Optimization and advanced linear algebra for problems arising from PDEs. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Numerical Linear Algebra with Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Conjugate gradient | es_ES |
dc.subject | Inexact Newton method | es_ES |
dc.subject | Quasi-Newton matrices | es_ES |
dc.subject | Sequence of preconditioners | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Compact quasi-Newton preconditioners for symmetric positive definite linear systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nla.2322 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bergamaschi, L.; Marín Mateos-Aparicio, J.; Martinez, A. (2020). Compact quasi-Newton preconditioners for symmetric positive definite linear systems. Numerical Linear Algebra with Applications. 27(6):1-17. https://doi.org/10.1002/nla.2322 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/nla.2322 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\422728 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Bergamaschi, L., & Putti, M. (1999). Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation. International Journal for Numerical Methods in Engineering, 45(8), 1025-1046. doi:10.1002/(sici)1097-0207(19990720)45:8<1025::aid-nme615>3.0.co;2-g | es_ES |
dc.description.references | Notay, Y. (2001). Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem. Numerical Linear Algebra with Applications, 9(1), 21-44. doi:10.1002/nla.246 | es_ES |
dc.description.references | Bergamaschi, L., & Martínez, A. (2014). Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems. Optimization Methods and Software, 30(2), 301-322. doi:10.1080/10556788.2014.908878 | es_ES |
dc.description.references | Bergamaschi, L., & Martínez, A. (2013). Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems. Journal of Applied Mathematics, 2013, 1-10. doi:10.1155/2013/767042 | es_ES |
dc.description.references | Martinez, J. M. (1993). A Theory of Secant Preconditioners. Mathematics of Computation, 60(202), 681. doi:10.2307/2153109 | es_ES |
dc.description.references | Morales, J. L., & Nocedal, J. (2000). Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM Journal on Optimization, 10(4), 1079-1096. doi:10.1137/s1052623497327854 | es_ES |
dc.description.references | Nabben, R., & Vuik, C. (2006). A Comparison of Deflation and the Balancing Preconditioner. SIAM Journal on Scientific Computing, 27(5), 1742-1759. doi:10.1137/040608246 | es_ES |
dc.description.references | Freitag, M. A., & Spence, A. (2007). A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA Journal of Numerical Analysis, 28(3), 522-551. doi:10.1093/imanum/drm036 | es_ES |
dc.description.references | Martínez, Á. (2016). Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems. Numerical Linear Algebra with Applications, 23(3), 427-443. doi:10.1002/nla.2032 | es_ES |
dc.description.references | Gratton, S., Sartenaer, A., & Tshimanga, J. (2011). On A Class of Limited Memory Preconditioners For Large Scale Linear Systems With Multiple Right-Hand Sides. SIAM Journal on Optimization, 21(3), 912-935. doi:10.1137/08074008 | es_ES |
dc.description.references | Bergamaschi, L., Bru, R., & Martínez, A. (2011). Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian. Mathematical and Computer Modelling, 54(7-8), 1863-1873. doi:10.1016/j.mcm.2010.11.064 | es_ES |
dc.description.references | DeGuchy, O., Erway, J. B., & Marcia, R. F. (2018). Compact representation of the full Broyden class of quasi‐Newton updates. Numerical Linear Algebra with Applications, 25(5). doi:10.1002/nla.2186 | es_ES |
dc.description.references | Nocedal, J., & Wright, S. J. (Eds.). (1999). Numerical Optimization. Springer Series in Operations Research and Financial Engineering. doi:10.1007/b98874 | es_ES |
dc.description.references | Dembo, R. S., Eisenstat, S. C., & Steihaug, T. (1982). Inexact Newton Methods. SIAM Journal on Numerical Analysis, 19(2), 400-408. doi:10.1137/0719025 | es_ES |
dc.description.references | Kelley, C. T. (1999). Iterative Methods for Optimization. doi:10.1137/1.9781611970920 | es_ES |
dc.description.references | Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Representations of quasi-Newton matrices and their use in limited memory methods. Mathematical Programming, 63(1-3), 129-156. doi:10.1007/bf01582063 | es_ES |
dc.description.references | Bergamaschi, L. (2020). A Survey of Low-Rank Updates of Preconditioners for Sequences of Symmetric Linear Systems. Algorithms, 13(4), 100. doi:10.3390/a13040100 | es_ES |
dc.description.references | Powers, R. T., & Størmer, E. (1970). Free states of the canonical anticommutation relations. Communications in Mathematical Physics, 16(1), 1-33. doi:10.1007/bf01645492 | es_ES |
dc.description.references | Ipsen, I. C. F., & Nadler, B. (2009). Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices. SIAM Journal on Matrix Analysis and Applications, 31(1), 40-53. doi:10.1137/070682745 | es_ES |
dc.description.references | Simoncini, V., & Eldén, L. (2002). Bit Numerical Mathematics, 42(1), 159-182. doi:10.1023/a:1021930421106 | es_ES |
dc.description.references | G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427 | es_ES |
dc.description.references | Tapia, R. A., Dennis, J. E., & Schäfermeyer, J. P. (2018). Inverse, Shifted Inverse, and Rayleigh Quotient Iteration as Newton’s Method. SIAM Review, 60(1), 3-55. doi:10.1137/15m1049956 | es_ES |