Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera, Manuel | es_ES |
dc.contributor.author | Pérez-Hernández, Marco | es_ES |
dc.contributor.author | Parlikad, Ajith Kumar | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.date.accessioned | 2021-03-01T08:08:10Z | |
dc.date.available | 2021-03-01T08:08:10Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162561 | |
dc.description.abstract | [EN] Systems engineering is an ubiquitous discipline of Engineering overlapping industrial, chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides tools for dealing with the complexity and dynamics related to the optimisation of physical, natural, and virtual systems management. This paper presents a review of how multi-agent systems and complex networks theory are brought together to address systems engineering and management problems. The review also encompasses current and future research directions both for theoretical fundamentals and applications in the industry. This is made by considering trends such as mesoscale, multiscale, and multilayer networks along with the state-of-art analysis on network dynamics and intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain networks are instances of research topics for which this literature review is highly relevant. | es_ES |
dc.description.sponsorship | This research was funded by the EPSRC and BT Prosperity Partnership project: Next Generation Converged Digital Infrastructure, grant number EP/R004935/1. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Processes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Systems engineering | es_ES |
dc.subject | Complex networks | es_ES |
dc.subject | Multi-agent systems | es_ES |
dc.subject | Optimisation | es_ES |
dc.subject | Processes systems engineering | es_ES |
dc.subject | Agent-based control | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/pr8030312 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FR004935%2F1/GB/Next Generation Converged Digital infrastructure (NG-CDI)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Herrera, M.; Pérez-Hernández, M.; Parlikad, AK.; Izquierdo Sebastián, J. (2020). Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes. 8(3):1-29. https://doi.org/10.3390/pr8030312 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/pr8030312 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2227-9717 | es_ES |
dc.relation.pasarela | S\407893 | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.description.references | Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268-276. doi:10.1038/35065725 | es_ES |
dc.description.references | Winkler, J., Dueñas-Osorio, L., Stein, R., & Subramanian, D. (2011). Interface Network Models for Complex Urban Infrastructure Systems. Journal of Infrastructure Systems, 17(4), 138-150. doi:10.1061/(asce)is.1943-555x.0000068 | es_ES |
dc.description.references | Nekovee, M., Moreno, Y., Bianconi, G., & Marsili, M. (2007). Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics and its Applications, 374(1), 457-470. doi:10.1016/j.physa.2006.07.017 | es_ES |
dc.description.references | Wong, A. S. Y., & Huck, W. T. S. (2017). Grip on complexity in chemical reaction networks. Beilstein Journal of Organic Chemistry, 13, 1486-1497. doi:10.3762/bjoc.13.147 | es_ES |
dc.description.references | Gosak, M., Markovič, R., Dolenšek, J., Slak Rupnik, M., Marhl, M., Stožer, A., & Perc, M. (2018). Network science of biological systems at different scales: A review. Physics of Life Reviews, 24, 118-135. doi:10.1016/j.plrev.2017.11.003 | es_ES |
dc.description.references | Van Steen, M., & Tanenbaum, A. S. (2016). A brief introduction to distributed systems. Computing, 98(10), 967-1009. doi:10.1007/s00607-016-0508-7 | es_ES |
dc.description.references | Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., … Johansson, K. H. (2019). A survey of distributed optimization. Annual Reviews in Control, 47, 278-305. doi:10.1016/j.arcontrol.2019.05.006 | es_ES |
dc.description.references | Charyyev, B., & Gunes, M. H. (2019). Complex network of United States migration. Computational Social Networks, 6(1). doi:10.1186/s40649-019-0061-6 | es_ES |
dc.description.references | Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., … Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559. doi:10.1073/pnas.1517441113 | es_ES |
dc.description.references | Manuel, P. (2010). Computational Aspects of Carbon and Boron Nanotubes. Molecules, 15(12), 8709-8722. doi:10.3390/molecules15128709 | es_ES |
dc.description.references | Hinkelmann, F., Murrugarra, D., Jarrah, A. S., & Laubenbacher, R. (2010). A Mathematical Framework for Agent Based Models of Complex Biological Networks. Bulletin of Mathematical Biology, 73(7), 1583-1602. doi:10.1007/s11538-010-9582-8 | es_ES |
dc.description.references | Zhao, J., Yu, H., Luo, J., Cao, Z. W., & Li, Y. (2006). Complex networks theory for analyzing metabolic networks. Chinese Science Bulletin, 51(13), 1529-1537. doi:10.1007/s11434-006-2015-2 | es_ES |
dc.description.references | Borer, B., Ataman, M., Hatzimanikatis, V., & Or, D. (2019). Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLOS Computational Biology, 15(6), e1007127. doi:10.1371/journal.pcbi.1007127 | es_ES |
dc.description.references | Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018). Network Topology Independent Multi-Agent Dynamic Optimal Power Flow for Microgrids With Distributed Energy Storage Systems. IEEE Transactions on Smart Grid, 9(4), 3419-3429. doi:10.1109/tsg.2016.2631600 | es_ES |
dc.description.references | Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2011). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183-230. doi:10.1007/s10100-011-0210-y | es_ES |
dc.description.references | Nair, A. S., Hossen, T., Campion, M., Selvaraj, D. F., Goveas, N., Kaabouch, N., & Ranganathan, P. (2018). Multi-Agent Systems for Resource Allocation and Scheduling in a Smart Grid. Technology and Economics of Smart Grids and Sustainable Energy, 3(1). doi:10.1007/s40866-018-0052-y | es_ES |
dc.description.references | Brintrup, A., Wang, Y., & Tiwari, A. (2017). Supply Networks as Complex Systems: A Network-Science-Based Characterization. IEEE Systems Journal, 11(4), 2170-2181. doi:10.1109/jsyst.2015.2425137 | es_ES |
dc.description.references | Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895-900. doi:10.1038/nature03288 | es_ES |
dc.description.references | Zio, E. (2007). From complexity science to reliability efficiency: a new way of looking at complex network systems and critical infrastructures. International Journal of Critical Infrastructures, 3(3/4), 488. doi:10.1504/ijcis.2007.014122 | es_ES |
dc.description.references | Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918 | es_ES |
dc.description.references | Barabási, A.-L. (2009). Scale-Free Networks: A Decade and Beyond. Science, 325(5939), 412-413. doi:10.1126/science.1173299 | es_ES |
dc.description.references | Viana, M. P., Strano, E., Bordin, P., & Barthelemy, M. (2013). The simplicity of planar networks. Scientific Reports, 3(1). doi:10.1038/srep03495 | es_ES |
dc.description.references | Boeing, G. (2018). Planarity and street network representation in urban form analysis. Environment and Planning B: Urban Analytics and City Science, 47(5), 855-869. doi:10.1177/2399808318802941 | es_ES |
dc.description.references | Diet, A., & Barthelemy, M. (2018). Towards a classification of planar maps. Physical Review E, 98(6). doi:10.1103/physreve.98.062304 | es_ES |
dc.description.references | Strano, E., Nicosia, V., Latora, V., Porta, S., & Barthélemy, M. (2012). Elementary processes governing the evolution of road networks. Scientific Reports, 2(1). doi:10.1038/srep00296 | es_ES |
dc.description.references | Giudicianni, C., Di Nardo, A., Di Natale, M., Greco, R., Santonastaso, G., & Scala, A. (2018). Topological Taxonomy of Water Distribution Networks. Water, 10(4), 444. doi:10.3390/w10040444 | es_ES |
dc.description.references | Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826. doi:10.1073/pnas.122653799 | es_ES |
dc.description.references | Rieckmann, J. C., Geiger, R., Hornburg, D., Wolf, T., Kveler, K., Jarrossay, D., … Meissner, F. (2017). Social network architecture of human immune cells unveiled by quantitative proteomics. Nature Immunology, 18(5), 583-593. doi:10.1038/ni.3693 | es_ES |
dc.description.references | Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M., & Wolf, M. (2014). The evolutionary and ecological consequences of animal social networks: emerging issues. Trends in Ecology & Evolution, 29(6), 326-335. doi:10.1016/j.tree.2014.04.002 | es_ES |
dc.description.references | Brentan, B., Campbell, E., Goulart, T., Manzi, D., Meirelles, G., Herrera, M., … Luvizotto, E. (2018). Social Network Community Detection and Hybrid Optimization for Dividing Water Supply into District Metered Areas. Journal of Water Resources Planning and Management, 144(5), 04018020. doi:10.1061/(asce)wr.1943-5452.0000924 | es_ES |
dc.description.references | Salvador Palau, A., Liang, Z., Lütgehetmann, D., & Parlikad, A. K. (2019). Collaborative prognostics in Social Asset Networks. Future Generation Computer Systems, 92, 987-995. doi:10.1016/j.future.2018.02.011 | es_ES |
dc.description.references | Lee, S. H., Cucuringu, M., & Porter, M. A. (2014). Density-based and transport-based core-periphery structures in networks. Physical Review E, 89(3). doi:10.1103/physreve.89.032810 | es_ES |
dc.description.references | Verma, T., Russmann, F., Araújo, N. A. M., Nagler, J., & Herrmann, H. J. (2016). Emergence of core–peripheries in networks. Nature Communications, 7(1). doi:10.1038/ncomms10441 | es_ES |
dc.description.references | Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. doi:10.1016/j.socnet.2010.03.006 | es_ES |
dc.description.references | Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543 | es_ES |
dc.description.references | Wuchty, S., & Stadler, P. F. (2003). Centers of complex networks. Journal of Theoretical Biology, 223(1), 45-53. doi:10.1016/s0022-5193(03)00071-7 | es_ES |
dc.description.references | Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806 | es_ES |
dc.description.references | Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 56(18), 3825-3833. doi:10.1016/j.comnet.2012.10.007 | es_ES |
dc.description.references | Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. doi:10.1007/bf02289026 | es_ES |
dc.description.references | Serrano, M. Á., & Boguñá, M. (2006). Clustering in complex networks. I. General formalism. Physical Review E, 74(5). doi:10.1103/physreve.74.056114 | es_ES |
dc.description.references | Suchecki, K., Eguíluz, V. M., & San Miguel, M. (2005). Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Physical Review E, 72(3). doi:10.1103/physreve.72.036132 | es_ES |
dc.description.references | Noldus, R., & Van Mieghem, P. (2015). Assortativity in complex networks. Journal of Complex Networks, 3(4), 507-542. doi:10.1093/comnet/cnv005 | es_ES |
dc.description.references | Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47 | es_ES |
dc.description.references | Gao, J., Barzel, B., & Barabási, A.-L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312. doi:10.1038/nature16948 | es_ES |
dc.description.references | Li, D., Zhang, Q., Zio, E., Havlin, S., & Kang, R. (2015). Network reliability analysis based on percolation theory. Reliability Engineering & System Safety, 142, 556-562. doi:10.1016/j.ress.2015.05.021 | es_ES |
dc.description.references | Gao, J., Liu, X., Li, D., & Havlin, S. (2015). Recent Progress on the Resilience of Complex Networks. Energies, 8(10), 12187-12210. doi:10.3390/en81012187 | es_ES |
dc.description.references | Chen, X. G. (2017). A novel reliability estimation method of complex network based on Monte Carlo. Cluster Computing, 20(2), 1063-1073. doi:10.1007/s10586-017-0826-3 | es_ES |
dc.description.references | Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. WIREs Computational Statistics, 6(6), 386-392. doi:10.1002/wics.1314 | es_ES |
dc.description.references | Newman, M. E. J., & Ziff, R. M. (2001). Fast Monte Carlo algorithm for site or bond percolation. Physical Review E, 64(1). doi:10.1103/physreve.64.016706 | es_ES |
dc.description.references | Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., Stanley, H. E., & Havlin, S. (2014). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3), 669-672. doi:10.1073/pnas.1419185112 | es_ES |
dc.description.references | Carvalho, R., Buzna, L., Bono, F., Masera, M., Arrowsmith, D. K., & Helbing, D. (2014). Resilience of Natural Gas Networks during Conflicts, Crises and Disruptions. PLoS ONE, 9(3), e90265. doi:10.1371/journal.pone.0090265 | es_ES |
dc.description.references | Torres, J. M., Duenas-Osorio, L., Li, Q., & Yazdani, A. (2017). Exploring Topological Effects on Water Distribution System Performance Using Graph Theory and Statistical Models. Journal of Water Resources Planning and Management, 143(1), 04016068. doi:10.1061/(asce)wr.1943-5452.0000709 | es_ES |
dc.description.references | Chen, Y., Li, Y., Li, W., Wu, X., Cai, Y., Cao, Y., & Rehtanz, C. (2018). Cascading Failure Analysis of Cyber Physical Power System With Multiple Interdependency and Control Threshold. IEEE Access, 6, 39353-39362. doi:10.1109/access.2018.2855441 | es_ES |
dc.description.references | Hui, K.-P. (2007). Monte Carlo Network Reliability Ranking Estimation. IEEE Transactions on Reliability, 56(1), 50-57. doi:10.1109/tr.2006.890898 | es_ES |
dc.description.references | Piraveenan, M., Prokopenko, M., & Hossain, L. (2013). Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks. PLoS ONE, 8(1), e53095. doi:10.1371/journal.pone.0053095 | es_ES |
dc.description.references | Liao, H., Mariani, M. S., Medo, M., Zhang, Y.-C., & Zhou, M.-Y. (2017). Ranking in evolving complex networks. Physics Reports, 689, 1-54. doi:10.1016/j.physrep.2017.05.001 | es_ES |
dc.description.references | Morone, F., & Makse, H. A. (2015). Influence maximization in complex networks through optimal percolation. Nature, 524(7563), 65-68. doi:10.1038/nature14604 | es_ES |
dc.description.references | Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports, 650, 1-63. doi:10.1016/j.physrep.2016.06.007 | es_ES |
dc.description.references | Jalili, M., & Yu, X. (2016). Enhancement of Synchronizability in Networks with Community Structure through Adding Efficient Inter-Community Links. IEEE Transactions on Network Science and Engineering, 3(2), 106-116. doi:10.1109/tnse.2016.2566615 | es_ES |
dc.description.references | Jalili, M., & Perc, M. (2017). Information cascades in complex networks. Journal of Complex Networks. doi:10.1093/comnet/cnx019 | es_ES |
dc.description.references | Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), 1777-1787. doi:10.1016/j.physa.2011.09.017 | es_ES |
dc.description.references | Lawyer, G. (2015). Understanding the influence of all nodes in a network. Scientific Reports, 5(1). doi:10.1038/srep08665 | es_ES |
dc.description.references | Zhang, Z.-K., Liu, C., Zhan, X.-X., Lu, X., Zhang, C.-X., & Zhang, Y.-C. (2016). Dynamics of information diffusion and its applications on complex networks. Physics Reports, 651, 1-34. doi:10.1016/j.physrep.2016.07.002 | es_ES |
dc.description.references | Dai, X., Hu, M., Tian, W., Xie, D., & Hu, B. (2016). Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion. PLOS ONE, 11(6), e0157945. doi:10.1371/journal.pone.0157945 | es_ES |
dc.description.references | Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925 | es_ES |
dc.description.references | Bardet, J.-P., & Little, R. (2014). Epidemiology of urban water distribution systems. Water Resources Research, 50(8), 6447-6465. doi:10.1002/2013wr015017 | es_ES |
dc.description.references | Ding, L., Li, K., Zhou, Y., & Love, P. E. D. (2017). An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Automation in Construction, 84, 96-110. doi:10.1016/j.autcon.2017.08.029 | es_ES |
dc.description.references | Kim, H., & Anderson, R. (2012). Temporal node centrality in complex networks. Physical Review E, 85(2). doi:10.1103/physreve.85.026107 | es_ES |
dc.description.references | Braha, D., & Bar-Yam, Y. (2006). From centrality to temporary fame: Dynamic centrality in complex networks. Complexity, 12(2), 59-63. doi:10.1002/cplx.20156 | es_ES |
dc.description.references | Shekhtman, L. M., Danziger, M. M., & Havlin, S. (2016). Recent advances on failure and recovery in networks of networks. Chaos, Solitons & Fractals, 90, 28-36. doi:10.1016/j.chaos.2016.02.002 | es_ES |
dc.description.references | Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016 | es_ES |
dc.description.references | De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., … Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4). doi:10.1103/physrevx.3.041022 | es_ES |
dc.description.references | Rahmede, C., Iacovacci, J., Arenas, A., & Bianconi, G. (2017). Centralities of nodes and influences of layers in large multiplex networks. Journal of Complex Networks, 6(5), 733-752. doi:10.1093/comnet/cnx050 | es_ES |
dc.description.references | Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C. J., Moreno, Y., & Arenas, A. (2013). Diffusion Dynamics on Multiplex Networks. Physical Review Letters, 110(2). doi:10.1103/physrevlett.110.028701 | es_ES |
dc.description.references | Zhao, D., Li, L., Peng, H., Luo, Q., & Yang, Y. (2014). Multiple routes transmitted epidemics on multiplex networks. Physics Letters A, 378(10), 770-776. doi:10.1016/j.physleta.2014.01.014 | es_ES |
dc.description.references | De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865 | es_ES |
dc.description.references | Cellai, D., López, E., Zhou, J., Gleeson, J. P., & Bianconi, G. (2013). Percolation in multiplex networks with overlap. Physical Review E, 88(5). doi:10.1103/physreve.88.052811 | es_ES |
dc.description.references | Osat, S., Faqeeh, A., & Radicchi, F. (2017). Optimal percolation on multiplex networks. Nature Communications, 8(1). doi:10.1038/s41467-017-01442-2 | es_ES |
dc.description.references | He, W., Chen, G., Han, Q.-L., Du, W., Cao, J., & Qian, F. (2017). Multiagent Systems on Multilayer Networks: Synchronization Analysis and Network Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 1655-1667. doi:10.1109/tsmc.2017.2659759 | es_ES |
dc.description.references | Milanovic, J. V., & Zhu, W. (2018). Modeling of Interconnected Critical Infrastructure Systems Using Complex Network Theory. IEEE Transactions on Smart Grid, 9(5), 4637-4648. doi:10.1109/tsg.2017.2665646 | es_ES |
dc.description.references | Nwana, H. S. (1996). Software agents: an overview. The Knowledge Engineering Review, 11(3), 205-244. doi:10.1017/s026988890000789x | es_ES |
dc.description.references | Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. Proceedings of the 2009 Winter Simulation Conference (WSC). doi:10.1109/wsc.2009.5429318 | es_ES |
dc.description.references | Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151-162. doi:10.1057/jos.2010.3 | es_ES |
dc.description.references | Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(Supplement 3), 7280-7287. doi:10.1073/pnas.082080899 | es_ES |
dc.description.references | Belsare, A. V., & Gompper, M. E. (2015). A model-based approach for investigation and mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in central India. Ecological Modelling, 296, 102-112. doi:10.1016/j.ecolmodel.2014.10.031 | es_ES |
dc.description.references | Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2001). Agent-based simulation of a financial market. Physica A: Statistical Mechanics and its Applications, 299(1-2), 319-327. doi:10.1016/s0378-4371(01)00312-0 | es_ES |
dc.description.references | Barbosa, J., & Leitao, P. (2011). Simulation of multi-agent manufacturing systems using Agent-Based Modelling platforms. 2011 9th IEEE International Conference on Industrial Informatics. doi:10.1109/indin.2011.6034926 | es_ES |
dc.description.references | Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. The Knowledge Engineering Review, 10(2), 115-152. doi:10.1017/s0269888900008122 | es_ES |
dc.description.references | Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program?: A taxonomy for autonomous agents. Lecture Notes in Computer Science, 21-35. doi:10.1007/bfb0013570 | es_ES |
dc.description.references | HEXMOOR, H. (2002). A model of absolute autonomy and power: Toward group effects. Connection Science, 14(4), 323-333. doi:10.1080/0954009021000068727 | es_ES |
dc.description.references | Hexmoor, H., Castelfranchi, C., & Falcone, R. (Eds.). (2003). Agent Autonomy. Multiagent Systems, Artificial Societies, and Simulated Organizations. doi:10.1007/978-1-4419-9198-0 | es_ES |
dc.description.references | Brewka, G. (1996). Artificial intelligence—a modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. The Knowledge Engineering Review, 11(1), 78-79. doi:10.1017/s0269888900007724 | es_ES |
dc.description.references | Agent based Modelling and Simulation using State Machines. (2012). Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications. doi:10.5220/0004164802700279 | es_ES |
dc.description.references | Miao, C. Y., Goh, A., Miao, Y., & Yang, Z. H. (2002). Agent that models, reasons and makes decisions. Knowledge-Based Systems, 15(3), 203-211. doi:10.1016/s0950-7051(01)00157-5 | es_ES |
dc.description.references | Dibley, M., Li, H., Rezgui, Y., & Miles, J. (2015). AN INTEGRATED FRAMEWORK UTILISING SOFTWARE AGENT REASONING AND ONTOLOGY MODELS FOR SENSOR BASED BUILDING MONITORING. Journal of Civil Engineering and Management, 21(3), 356-375. doi:10.3846/13923730.2014.890645 | es_ES |
dc.description.references | González, E. J., Hamilton, A. F., Moreno, L., Marichal, R. L., & Muñoz, V. (2006). Software experience when using ontologies in a multi-agent system for automated planning and scheduling. Software: Practice and Experience, 36(7), 667-688. doi:10.1002/spe.711 | es_ES |
dc.description.references | Ward, J. A., Evans, A. J., & Malleson, N. S. (2016). Dynamic calibration of agent-based models using data assimilation. Royal Society Open Science, 3(4), 150703. doi:10.1098/rsos.150703 | es_ES |
dc.description.references | Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures, and languages: A survey. Intelligent Agents, 1-39. doi:10.1007/3-540-58855-8_1 | es_ES |
dc.description.references | Consoli, A., Tweedale, J., & Jain, L. (s. f.). The Link between Agent Coordination and Cooperation. Intelligent Information Processing III, 11-19. doi:10.1007/978-0-387-44641-7_2 | es_ES |
dc.description.references | FIPA ACL Message Structure Specificationhttp://www.fipa.org/specs/fipa00061/SC00061G.html | es_ES |
dc.description.references | Kibble, R. (2006). Speech acts, commitment and multi-agent communication. Computational & Mathematical Organization Theory, 12(2-3), 127-145. doi:10.1007/s10588-006-9540-z | es_ES |
dc.description.references | Hadeli, Valckenaers, P., Kollingbaum, M., & Van Brussel, H. (2004). Multi-agent coordination and control using stigmergy. Computers in Industry, 53(1), 75-96. doi:10.1016/s0166-3615(03)00123-4 | es_ES |
dc.description.references | Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215-233. doi:10.1109/jproc.2006.887293 | es_ES |
dc.description.references | Gulzar, M. M., Rizvi, S. T. H., Javed, M. Y., Munir, U., & Asif, H. (2018). Multi-Agent Cooperative Control Consensus: A Comparative Review. Electronics, 7(2), 22. doi:10.3390/electronics7020022 | es_ES |
dc.description.references | Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Serugendo, G. D. M., … Ye, J. (2015). Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 17, 236-252. doi:10.1016/j.pmcj.2014.12.002 | es_ES |
dc.description.references | Severins, M., Klinkenberg, D., & Heesterbeek, H. (2007). Effects of heterogeneity in infection-exposure history and immunity on the dynamics of a protozoan parasite. Journal of The Royal Society Interface, 4(16), 841-849. doi:10.1098/rsif.2007.1061 | es_ES |
dc.description.references | Šperka, R., & Spišák, M. (2013). TRANSACTION COSTS INFLUENCE ON THE STABILITY OF FINANCIAL MARKET: AGENT-BASED SIMULATION. Journal of Business Economics and Management, 14(Supplement_1), S1-S12. doi:10.3846/16111699.2012.701227 | es_ES |
dc.description.references | Jong, J. de, Stellingwerff, L., & Pazienza, G. E. (2013). Eve: A Novel Open-Source Web-Based Agent Platform. 2013 IEEE International Conference on Systems, Man, and Cybernetics. doi:10.1109/smc.2013.265 | es_ES |
dc.description.references | Kilkki, O., Kangasrääsiö, A., Nikkilä, R., Alahäivälä, A., & Seilonen, I. (2014). Agent-based modeling and simulation of a smart grid: A case study of communication effects on frequency control. Engineering Applications of Artificial Intelligence, 33, 91-98. doi:10.1016/j.engappai.2014.04.007 | es_ES |
dc.description.references | Malik, F. H., & Lehtonen, M. (2016). A review: Agents in smart grids. Electric Power Systems Research, 131, 71-79. doi:10.1016/j.epsr.2015.10.004 | es_ES |
dc.description.references | Nikolic, I., & Dijkema, G. P. J. (2010). On the development of agent-based models for infrastructure evolution. International Journal of Critical Infrastructures, 6(2), 148. doi:10.1504/ijcis.2010.031072 | es_ES |
dc.description.references | Iturriza, M., Labaka, L., Sarriegi, J. M., & Hernantes, J. (2018). Modelling methodologies for analysing critical infrastructures. Journal of Simulation, 12(2), 128-143. doi:10.1080/17477778.2017.1418640 | es_ES |
dc.description.references | Ryu, D. H., Kim, H., & Um, K. (2009). Reducing security vulnerabilities for critical infrastructure. Journal of Loss Prevention in the Process Industries, 22(6), 1020-1024. doi:10.1016/j.jlp.2009.07.015 | es_ES |
dc.description.references | Bernieri, G., Etchevés Miciolino, E., Pascucci, F., & Setola, R. (2017). Monitoring system reaction in cyber-physical testbed under cyber-attacks. Computers & Electrical Engineering, 59, 86-98. doi:10.1016/j.compeleceng.2017.02.010 | es_ES |
dc.description.references | Taormina, R., Galelli, S., Tippenhauer, N. O., Salomons, E., Ostfeld, A., Eliades, D. G., … Ohar, Z. (2018). Battle of the Attack Detection Algorithms: Disclosing Cyber Attacks on Water Distribution Networks. Journal of Water Resources Planning and Management, 144(8), 04018048. doi:10.1061/(asce)wr.1943-5452.0000969 | es_ES |
dc.description.references | Bretas, A. S., Bretas, N. G., Carvalho, B., Baeyens, E., & Khargonekar, P. P. (2017). Smart grids cyber-physical security as a malicious data attack: An innovation approach. Electric Power Systems Research, 149, 210-219. doi:10.1016/j.epsr.2017.04.018 | es_ES |
dc.description.references | Cui, L., Hu, J., Park, B. B., & Bujanovic, P. (2018). Development of a simulation platform for safety impact analysis considering vehicle dynamics, sensor errors, and communication latencies: Assessing cooperative adaptive cruise control under cyber attack. Transportation Research Part C: Emerging Technologies, 97, 1-22. doi:10.1016/j.trc.2018.10.005 | es_ES |
dc.description.references | Liang, G., Weller, S. R., Zhao, J., Luo, F., & Dong, Z. Y. (2019). A Framework for Cyber-Topology Attacks: Line-Switching and New Attack Scenarios. IEEE Transactions on Smart Grid, 10(2), 1704-1712. doi:10.1109/tsg.2017.2776325 | es_ES |
dc.description.references | He, D., Chan, S., & Guizani, M. (2015). Mobile application security: malware threats and defenses. IEEE Wireless Communications, 22(1), 138-144. doi:10.1109/mwc.2015.7054729 | es_ES |
dc.description.references | Silk, H., Homer, M., & Gross, T. (2016). Design of Self-Organizing Networks: Creating Specified Degree Distributions. IEEE Transactions on Network Science and Engineering, 3(3), 147-158. doi:10.1109/tnse.2016.2586762 | es_ES |
dc.description.references | Chen, Y., Guo, Z., Yang, X., Hu, Y., & Zhu, Q. (2017). Optimization of Coverage in 5G Self-Organizing Small Cell Networks. Mobile Networks and Applications, 23(6), 1502-1512. doi:10.1007/s11036-017-0983-x | es_ES |
dc.description.references | Kuo, T.-W., Liou, B.-H., Lin, K. C.-J., & Tsai, M.-J. (2018). Deploying Chains of Virtual Network Functions: On the Relation Between Link and Server Usage. IEEE/ACM Transactions on Networking, 26(4), 1562-1576. doi:10.1109/tnet.2018.2842798 | es_ES |
dc.description.references | Liang, C., Wen, F., & Wang, Z. (2019). Trust-based distributed Kalman filtering for target tracking under malicious cyber attacks. Information Fusion, 46, 44-50. doi:10.1016/j.inffus.2018.04.002 | es_ES |
dc.description.references | Zañudo, J. G. T., Yang, G., & Albert, R. (2017). Structure-based control of complex networks with nonlinear dynamics. Proceedings of the National Academy of Sciences, 114(28), 7234-7239. doi:10.1073/pnas.1617387114 | es_ES |
dc.description.references | Ding, J., Wen, C., Li, G., & Chen, Z. (2021). Key Nodes Selection in Controlling Complex Networks via Convex Optimization. IEEE Transactions on Cybernetics, 51(1), 52-63. doi:10.1109/tcyb.2018.2888953 | es_ES |
dc.description.references | Fushimi, T., Saito, K., Ikeda, T., & Kazama, K. (2019). Estimating node connectedness in spatial network under stochastic link disconnection based on efficient sampling. Applied Network Science, 4(1). doi:10.1007/s41109-019-0187-3 | es_ES |
dc.description.references | Zhang, X., Mahadevan, S., Sankararaman, S., & Goebel, K. (2018). Resilience-based network design under uncertainty. Reliability Engineering & System Safety, 169, 364-379. doi:10.1016/j.ress.2017.09.009 | es_ES |
dc.description.references | Fu, C., Wang, Y., Gao, Y., & Wang, X. (2017). Complex networks repair strategies: Dynamic models. Physica A: Statistical Mechanics and its Applications, 482, 401-406. doi:10.1016/j.physa.2017.04.118 | es_ES |
dc.description.references | Gu, J., Zhu, Y., Guo, L., Jiang, J., Chi, L., Li, W., … Cai, X. (2015). Recent Progress in Some Active Topics on Complex Networks. Journal of Physics: Conference Series, 604, 012007. doi:10.1088/1742-6596/604/1/012007 | es_ES |
dc.description.references | Li, G., Deng, L., Xiao, G., Tang, P., Wen, C., Hu, W., … Stanley, H. E. (2018). Enabling Controlling Complex Networks with Local Topological Information. Scientific Reports, 8(1). doi:10.1038/s41598-018-22655-5 | es_ES |
dc.description.references | Dilts, D. M., Boyd, N. P., & Whorms, H. H. (1991). The evolution of control architectures for automated manufacturing systems. Journal of Manufacturing Systems, 10(1), 79-93. doi:10.1016/0278-6125(91)90049-8 | es_ES |
dc.description.references | Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3), 255-274. doi:10.1016/s0166-3615(98)00102-x | es_ES |
dc.description.references | Bongaerts, L., Monostori, L., McFarlane, D., & Kádár, B. (2000). Hierarchy in distributed shop floor control. Computers in Industry, 43(2), 123-137. doi:10.1016/s0166-3615(00)00062-2 | es_ES |
dc.description.references | Kai Cai, & Wonham, W. M. (2010). Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems. IEEE Transactions on Automatic Control, 55(3), 605-618. doi:10.1109/tac.2009.2039237 | es_ES |
dc.description.references | Duffie, N. A., & Piper, R. S. (1987). Non-hierarchical control of a flexible manufacturing cell. Robotics and Computer-Integrated Manufacturing, 3(2), 175-179. doi:10.1016/0736-5845(87)90099-8 | es_ES |
dc.description.references | McFarlane, D. C., & Bussmann, S. (2003). Holonic Manufacturing Control: Rationales, Developments and Open Issues. Agent-Based Manufacturing, 303-326. doi:10.1007/978-3-662-05624-0_13 | es_ES |
dc.description.references | Kollingbaum, M., Heikkilä, T., Peeters, P., Matson, J., Valckenaers, P., McFarlane, D., & Bluemink, G.-J. (2000). Emergent flow shop control based on MASCADA agents. IFAC Proceedings Volumes, 33(20), 187-192. doi:10.1016/s1474-6670(17)38047-3 | es_ES |
dc.description.references | McFarlane, D., Sarma, S., Chirn, J. L., Wong, C. ., & Ashton, K. (2003). Auto ID systems and intelligent manufacturing control. Engineering Applications of Artificial Intelligence, 16(4), 365-376. doi:10.1016/s0952-1976(03)00077-0 | es_ES |
dc.description.references | Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979-991. doi:10.1016/j.engappai.2008.09.005 | es_ES |
dc.description.references | Brintrup, A., McFarlane, D., Ranasinghe, D., Sanchez Lopez, T., & Owens, K. (2011). Will Intelligent Assets Take Off? Toward Self-Serving Aircraft. IEEE Intelligent Systems, 26(3), 66-75. doi:10.1109/mis.2009.89 | es_ES |
dc.description.references | Brintrup, A., & Ledwoch, A. (2018). Supply network science: Emergence of a new perspective on a classical field. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(3), 033120. doi:10.1063/1.5010766 | es_ES |
dc.description.references | Ledwoch, A., Brintrup, A., Mehnen, J., & Tiwari, A. (2018). Systemic Risk Assessment in Complex Supply Networks. IEEE Systems Journal, 12(2), 1826-1837. doi:10.1109/jsyst.2016.2596999 | es_ES |
dc.description.references | Hearnshaw, E. J. S., & Wilson, M. M. J. (2013). A complex network approach to supply chain network theory. International Journal of Operations & Production Management, 33(4), 442-469. doi:10.1108/01443571311307343 | es_ES |
dc.description.references | Marik, V., & McFarlane, D. (2005). Industrial Adoption of Agent-Based Technologies. IEEE Intelligent Systems, 20(1), 27-35. doi:10.1109/mis.2005.11 | es_ES |
dc.description.references | Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart Agents in Industrial Cyber–Physical Systems. Proceedings of the IEEE, 104(5), 1086-1101. doi:10.1109/jproc.2016.2521931 | es_ES |
dc.description.references | McFarlane, D., Giannikas, V., Wong, A. C. Y., & Harrison, M. (2013). Product intelligence in industrial control: Theory and practice. Annual Reviews in Control, 37(1), 69-88. doi:10.1016/j.arcontrol.2013.03.003 | es_ES |
dc.description.references | Pagani, G. A., & Aiello, M. (2013). The Power Grid as a complex network: A survey. Physica A: Statistical Mechanics and its Applications, 392(11), 2688-2700. doi:10.1016/j.physa.2013.01.023 | es_ES |
dc.description.references | Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American power grid. Physical Review E, 69(2). doi:10.1103/physreve.69.025103 | es_ES |
dc.description.references | Pagani, G. A., & Aiello, M. (2014). Power grid complex network evolutions for the smart grid. Physica A: Statistical Mechanics and its Applications, 396, 248-266. doi:10.1016/j.physa.2013.11.022 | es_ES |
dc.description.references | Moussawi, A., Derzsy, N., Lin, X., Szymanski, B. K., & Korniss, G. (2017). Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows. Scientific Reports, 7(1). doi:10.1038/s41598-017-11765-1 | es_ES |
dc.description.references | Roche, R., Blunier, B., Miraoui, A., Hilaire, V., & Koukam, A. (2010). Multi-agent systems for grid energy management: A short review. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society. doi:10.1109/iecon.2010.5675295 | es_ES |
dc.description.references | Dimeas, A. L., & Hatziargyriou, N. D. (2005). Operation of a Multiagent System for Microgrid Control. IEEE Transactions on Power Systems, 20(3), 1447-1455. doi:10.1109/tpwrs.2005.852060 | es_ES |
dc.description.references | Lin, J., & Ban, Y. (2013). Complex Network Topology of Transportation Systems. Transport Reviews, 33(6), 658-685. doi:10.1080/01441647.2013.848955 | es_ES |
dc.description.references | Lordan, O., Sallan, J. M., & Simo, P. (2014). Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda. Journal of Transport Geography, 37, 112-120. doi:10.1016/j.jtrangeo.2014.04.015 | es_ES |
dc.description.references | Crucitti, P., Latora, V., & Porta, S. (2006). Centrality measures in spatial networks of urban streets. Physical Review E, 73(3). doi:10.1103/physreve.73.036125 | es_ES |
dc.description.references | Scellato, S., Cardillo, A., Latora, V., & Porta, S. (2006). The backbone of a city. The European Physical Journal B, 50(1-2), 221-225. doi:10.1140/epjb/e2006-00066-4 | es_ES |
dc.description.references | Boeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65, 126-139. doi:10.1016/j.compenvurbsys.2017.05.004 | es_ES |
dc.description.references | Zheng, J.-F., Gao, Z.-Y., & Zhao, X.-M. (2007). Clustering and congestion effects on cascading failures of scale-free networks. Europhysics Letters (EPL), 79(5), 58002. doi:10.1209/0295-5075/79/58002 | es_ES |
dc.description.references | Tian, W., Dai, X., & Hu, M. (2018). Systemic Congestion Propagation in the Airspace Network. Mathematical Problems in Engineering, 2018, 1-12. doi:10.1155/2018/7171486 | es_ES |
dc.description.references | Baronti, F., Vazquez, S., & Chow, M.-Y. (2018). Modeling, Control, and Integration of Energy Storage Systems in E-Transportation and Smart Grid. IEEE Transactions on Industrial Electronics, 65(8), 6548-6551. doi:10.1109/tie.2018.2810658 | es_ES |
dc.description.references | Lygeros, J., Godbole, D. N., & Broucke, M. (2000). A fault tolerant control architecture for automated highway systems. IEEE Transactions on Control Systems Technology, 8(2), 205-219. doi:10.1109/87.826792 | es_ES |
dc.description.references | Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 30(5), 1685-1699. doi:10.1007/s11269-016-1245-6 | es_ES |
dc.description.references | Di Nardo, A., Giudicianni, C., Greco, R., Herrera, M., & Santonastaso, G. (2018). Applications of Graph Spectral Techniques to Water Distribution Network Management. Water, 10(1), 45. doi:10.3390/w10010045 | es_ES |
dc.description.references | Candelieri, A., & Archetti, F. (2014). Smart water in urban distribution networks: limited financial capacity and Big Data analytics. Urban Water II. doi:10.2495/uw140061 | es_ES |
dc.description.references | Herrera, M., Izquierdo, J., Pérez-García, R., & Montalvo, I. (2012). Multi-agent adaptive boosting on semi-supervised water supply clusters. Advances in Engineering Software, 50, 131-136. doi:10.1016/j.advengsoft.2012.02.005 | es_ES |
dc.description.references | Ayala-Cabrera, D., Herrera, M., Izquierdo, J., & Pérez-García, R. (2014). GPR data analysis using multi-agent and clustering approaches: A tool for technical management of water supply systems. Digital Signal Processing, 27, 140-149. doi:10.1016/j.dsp.2013.12.012 | es_ES |
dc.description.references | Figueiredo, J., Botto, M. A., & Rijo, M. (2013). SCADA system with predictive controller applied to irrigation canals. Control Engineering Practice, 21(6), 870-886. doi:10.1016/j.conengprac.2013.01.008 | es_ES |
dc.description.references | García, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory and practice—A survey. Automatica, 25(3), 335-348. doi:10.1016/0005-1098(89)90002-2 | es_ES |
dc.description.references | Bliek, F. W., van den Noort, A., Roossien, B., Kamphuis, R., de Wit, J., van der Velde, J., & Eijgelaar, M. (2011). The role of natural gas in smart grids. Journal of Natural Gas Science and Engineering, 3(5), 608-616. doi:10.1016/j.jngse.2011.07.008 | es_ES |
dc.description.references | Brown, H. E., Suryanarayanan, S., & Heydt, G. T. (2010). Some Characteristics of Emerging Distribution Systems Considering the Smart Grid Initiative. The Electricity Journal, 23(5), 64-75. doi:10.1016/j.tej.2010.05.005 | es_ES |
dc.description.references | Chacón, E., Besembel, I., & Hennet, J. C. (2004). Coordination and optimization in oil and gas production complexes. Computers in Industry, 53(1), 17-37. doi:10.1016/j.compind.2003.06.001 | es_ES |
dc.description.references | Ameli, H., Qadrdan, M., & Strbac, G. (2017). Value of gas network infrastructure flexibility in supporting cost effective operation of power systems. Applied Energy, 202, 571-580. doi:10.1016/j.apenergy.2017.05.132 | es_ES |
dc.description.references | Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5). doi:10.1103/physreve.70.056131 | es_ES |
dc.description.references | Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97-125. doi:10.1016/j.physrep.2012.03.001 | es_ES |
dc.description.references | Schaub, M. T., Delvenne, J.-C., Lambiotte, R., & Barahona, M. (2019). Multiscale dynamical embeddings of complex networks. Physical Review E, 99(6). doi:10.1103/physreve.99.062308 | es_ES |
dc.description.references | Raab, A., Lauth, E., Strunz, K., & Göhlich, D. (2019). Implementation Schemes for Electric Bus Fleets at Depots with Optimized Energy Procurements in Virtual Power Plant Operations. World Electric Vehicle Journal, 10(1), 5. doi:10.3390/wevj10010005 | es_ES |
dc.description.references | Giudicianni, C., Herrera, M., di Nardo, A., Carravetta, A., Ramos, H. M., & Adeyeye, K. (2020). Zero-net energy management for the monitoring and control of dynamically-partitioned smart water systems. Journal of Cleaner Production, 252, 119745. doi:10.1016/j.jclepro.2019.119745 | es_ES |
dc.description.references | Zhang, S., Tong, H., Xu, J., & Maciejewski, R. (2019). Graph convolutional networks: a comprehensive review. Computational Social Networks, 6(1). doi:10.1186/s40649-019-0069-y | es_ES |
dc.description.references | Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recognition, 97, 107000. doi:10.1016/j.patcog.2019.107000 | es_ES |
dc.description.references | Chen, S.-H., & Venkatachalam, R. (2017). Agent-based modelling as a foundation for big data. Journal of Economic Methodology, 24(4), 362-383. doi:10.1080/1350178x.2017.1388964 | es_ES |
dc.description.references | Da Silva, F. L., Warnell, G., Costa, A. H. R., & Stone, P. (2019). Agents teaching agents: a survey on inter-agent transfer learning. Autonomous Agents and Multi-Agent Systems, 34(1). doi:10.1007/s10458-019-09430-0 | es_ES |
dc.description.references | Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11-25. doi:10.1016/j.compind.2015.08.004 | es_ES |
dc.description.references | Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., & Liu, Y. (2017). Smart manufacturing based on cyber-physical systems and beyond. Journal of Intelligent Manufacturing, 30(8), 2805-2817. doi:10.1007/s10845-017-1384-5 | es_ES |
dc.description.references | Airlangga, G., & Liu, A. (2019). Initial Machine Learning Framework Development of Agriculture Cyber Physical Systems. Journal of Physics: Conference Series, 1196, 012065. doi:10.1088/1742-6596/1196/1/012065 | es_ES |
dc.description.references | Salah, K., Rehman, M. H. U., Nizamuddin, N., & Al-Fuqaha, A. (2019). Blockchain for AI: Review and Open Research Challenges. IEEE Access, 7, 10127-10149. doi:10.1109/access.2018.2890507 | es_ES |