Scheel, C. (2016). Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. Journal of Cleaner Production, 131, 376-386. doi:10.1016/j.jclepro.2016.05.018
Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders, 532-552. doi:10.1533/9780857098672.3.532
Durazzo, A. (s. f.). CHAPTER 3. Extractable and Non-extractable Polyphenols: an Overview. Non-extractable Polyphenols and Carotenoids, 37-45. doi:10.1039/9781788013208-00037
[+]
Scheel, C. (2016). Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. Journal of Cleaner Production, 131, 376-386. doi:10.1016/j.jclepro.2016.05.018
Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders, 532-552. doi:10.1533/9780857098672.3.532
Durazzo, A. (s. f.). CHAPTER 3. Extractable and Non-extractable Polyphenols: an Overview. Non-extractable Polyphenols and Carotenoids, 37-45. doi:10.1039/9781788013208-00037
Ortega, N., Macià, A., Romero, M.-P., Reguant, J., & Motilva, M.-J. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124(1), 65-71. doi:10.1016/j.foodchem.2010.05.105
Chen, X., He, X., Zhang, B., Sun, L., Liang, Z., & Huang, Q. (2019). Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules, 129, 433-441. doi:10.1016/j.ijbiomac.2019.01.215
(2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2017). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1-24. doi:10.1007/s00394-017-1445-8
Fraga, C. G., Croft, K. D., Kennedy, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514-528. doi:10.1039/c8fo01997e
Marhuenda-Muñoz, M., Laveriano-Santos, E. P., Tresserra-Rimbau, A., Lamuela-Raventós, R. M., Martínez-Huélamo, M., & Vallverdú-Queralt, A. (2019). Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients, 11(11), 2725. doi:10.3390/nu11112725
Zhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. doi:10.1016/j.lwt.2019.108621
Coronel, J., Pinos, I., & Amengual, J. (2019). β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients, 11(4), 842. doi:10.3390/nu11040842
Levy, M., Thaiss, C. A., & Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & Development, 30(14), 1589-1597. doi:10.1101/gad.284091.116
Guo, B., Yang, B., Pang, X., Chen, T., Chen, F., & Cheng, K.-W. (2019). Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food & Function, 10(9), 5644-5655. doi:10.1039/c9fo01018a
Lyu, Y., Wu, L., Wang, F., Shen, X., & Lin, D. (2018). Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine, 243(7), 613-620. doi:10.1177/1535370218763760
Castagnini, J. M., Betoret, N., Betoret, E., & Fito, P. (2015). Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT - Food Science and Technology, 64(2), 1289-1296. doi:10.1016/j.lwt.2015.06.044
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j
Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010
Seguí, L., Calabuig-Jiménez, L., Betoret, N., & Fito, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology, 50(12), 2579-2588. doi:10.1111/ijfs.12926
Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056
Cătunescu, G. M., Rotar, A. M., Pop, C. R., Diaconeasa, Z., Bunghez, F., Socaciu, M.-I., & Semeniuc, C. A. (2019). Influence of extraction pre-treatments on some phytochemicals and biological activity of Transylvanian cranberries (Vaccinium vitis-idea L.). LWT, 102, 385-392. doi:10.1016/j.lwt.2018.12.062
Gopalsamy, G., Mortimer, E., Greenfield, P., Bird, A. R., Young, G. P., & Christophersen, C. T. (2019). Resistant Starch Is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Nutrients, 11(6), 1345. doi:10.3390/nu11061345
Aguirre, M., Jonkers, D. M. A. E., Troost, F. J., Roeselers, G., & Venema, K. (2014). In Vitro Characterization of the Impact of Different Substrates on Metabolite Production, Energy Extraction and Composition of Gut Microbiota from Lean and Obese Subjects. PLoS ONE, 9(11), e113864. doi:10.1371/journal.pone.0113864
Olano-Martin, E., Mountzouris, K. C., Gibson, G. R., & Rastall, R. A. (2000). In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition, 83(3), 247-255. doi:10.1017/s0007114500000325
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60
Rohart, F., Gautier, B., Singh, A., & Lê Cao, K.-A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Computational Biology, 13(11), e1005752. doi:10.1371/journal.pcbi.1005752
Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016
Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019
Lee, C.-W., Oh, H.-J., Han, S.-H., & Lim, S.-B. (2012). Effects of hot air and freeze drying methods on physicochemical properties of citrus ‘hallabong’ powders. Food Science and Biotechnology, 21(6), 1633-1639. doi:10.1007/s10068-012-0217-8
Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-z
Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522-531. doi:10.1016/j.foodchem.2014.05.135
De Moraes Crizel, T., Hermes, V. S., de Oliveira Rios, A., & Flôres, S. H. (2016). Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder. Journal of Food Science and Technology, 53(11), 4067-4075. doi:10.1007/s13197-016-2413-7
Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-z
Conesa, C., Laguarda-Miró, N., Fito, P., & Seguí, L. (2019). Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste and Biomass Valorization, 11(7), 3749-3760. doi:10.1007/s12649-019-00621-0
Martínez-Las Heras, R., Pinazo, A., Heredia, A., & Andrés, A. (2017). Evaluation studies of persimmon plant ( Diospyros kaki ) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478-485. doi:10.1016/j.foodchem.2016.07.104
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. doi:10.1080/16546628.2017.1361779
Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.x
Chen, G.-L., Chen, S.-G., Zhao, Y.-Y., Luo, C.-X., Li, J., & Gao, Y.-Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. doi:10.1016/j.indcrop.2014.03.018
Stinco, C. M., Fernández-Vázquez, R., Escudero-Gilete, M. L., Heredia, F. J., Meléndez-Martínez, A. J., & Vicario, I. M. (2012). Effect of Orange Juice’s Processing on the Color, Particle Size, and Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 60(6), 1447-1455. doi:10.1021/jf2043949
Hedrén, E., Diaz, V., & Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425-430. doi:10.1038/sj.ejcn.1601329
Louis, P., Scott, K. P., Duncan, S. H., & Flint, H. J. (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102(5), 1197-1208. doi:10.1111/j.1365-2672.2007.03322.x
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289-306. doi:10.4161/gmic.19897
Pérez-Burillo, S., Pastoriza, S., Jiménez-Hernández, N., D’Auria, G., Francino, M. P., & Rufián-Henares, J. A. (2018). Effect of Food Thermal Processing on the Composition of the Gut Microbiota. Journal of Agricultural and Food Chemistry, 66(43), 11500-11509. doi:10.1021/acs.jafc.8b04077
Waters, J. L., & Ley, R. E. (2019). The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17(1). doi:10.1186/s12915-019-0699-4
Gu, F., Borewicz, K., Richter, B., der Zaal, P. H., Smidt, H., Buwalda, P. L., & Schols, H. A. (2018). In Vitro Fermentation Behavior of Isomalto/Malto‐Polysaccharides Using Human Fecal Inoculum Indicates Prebiotic Potential. Molecular Nutrition & Food Research, 62(12), 1800232. doi:10.1002/mnfr.201800232
Mosele, J., Macià, A., & Motilva, M.-J. (2015). Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules, 20(9), 17429-17468. doi:10.3390/molecules200917429
Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., & Porrini, M. (2011). Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. Journal of Agricultural and Food Chemistry, 59(24), 12815-12820. doi:10.1021/jf2028686
[-]