- -

Development of an interface numerical model for C-FRPs applied on flat and curved masonry pillars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of an interface numerical model for C-FRPs applied on flat and curved masonry pillars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milani, Gabriele es_ES
dc.contributor.author Fagone, Mario es_ES
dc.contributor.author Rotunno, Tommaso es_ES
dc.contributor.author Grande, Ernesto es_ES
dc.contributor.author Bertolesi, Elisa es_ES
dc.date.accessioned 2021-03-01T08:09:14Z
dc.date.available 2021-03-01T08:09:14Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 0263-8223 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162584
dc.description.abstract [EN] A novel interface numerical model for the incremental analysis of the debonding phenomenon of Carbon Fiber Reinforced Polymer (C-FRP) reinforcements externally applied on flat and curved masonry pillars is presented. The interface tangential stress-slip behavior is suitably described by a C¿ exponential function, that accounts for the ductility and residual strength variation due to the presence of interfacial normal stresses, according to a frictional-cohesive relationship. Such dependence is particularly important when dealing with C-FRP reinforcements applied to masonry curved structures (i.e. arches and vaults). The smooth interface relationship here adopted allows to deal with a boundary value problem for a system of second order differential equations, representing a standard delamination problem, without singularities. Consequently, an easy and robust numerical solution algorithm based on a standard finite differences approach can be adopted. The model is validated against some experimental and numerical results obtained previously by the authors and concerning shear-lap bond tests of flat and curved masonry pillars reinforced by C-FRP sheets. The obtained results underline an excellent robustness and reliability of the experimental global and local behavior. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Composite Structures es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Masonry es_ES
dc.subject Arches and vaults es_ES
dc.subject C-C-FRP reinforcement es_ES
dc.subject Non-linear boundary value problem for ODEs es_ES
dc.subject Debonding es_ES
dc.subject Curved substrates es_ES
dc.title Development of an interface numerical model for C-FRPs applied on flat and curved masonry pillars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compstruct.2020.112074 es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Milani, G.; Fagone, M.; Rotunno, T.; Grande, E.; Bertolesi, E. (2020). Development of an interface numerical model for C-FRPs applied on flat and curved masonry pillars. Composite Structures. 241:1-19. https://doi.org/10.1016/j.compstruct.2020.112074 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compstruct.2020.112074 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 241 es_ES
dc.relation.pasarela S\406562 es_ES
dc.description.references Grande, E., Milani, G., & Sacco, E. (2008). Modelling and analysis of FRP-strengthened masonry panels. Engineering Structures, 30(7), 1842-1860. doi:10.1016/j.engstruct.2007.12.007 es_ES
dc.description.references Mistakidis, E. S., De Matteis, G., & Formisano, A. (2007). Low yield metal shear panels as an alternative for the seismic upgrading of concrete structures. Advances in Engineering Software, 38(8-9), 626-636. doi:10.1016/j.advengsoft.2006.08.043 es_ES
dc.description.references Witzany, J., Brožovský, J., Čejka, T., Kroftová, K., Kubát, J., Makovička, D., & Zigler, R. (2015). The Application of Carbon Composites in the Rehabilitation of Historic Baroque Vaults. Polymers, 7(12), 2670-2689. doi:10.3390/polym7121540 es_ES
dc.description.references Caggegi, C., Carozzi, F. G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., … Zuccarino, L. (2017). Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B: Engineering, 127, 175-195. doi:10.1016/j.compositesb.2017.05.048 es_ES
dc.description.references D’Ambrisi, A., Feo, L., & Focacci, F. (2013). Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry. Composites Part B: Engineering, 46, 15-20. doi:10.1016/j.compositesb.2012.10.018 es_ES
dc.description.references Dalalbashi, A., Ghiassi, B., & Oliveira, D. V. (2019). Textile-to-mortar bond behaviour in lime-based textile reinforced mortars. Construction and Building Materials, 227, 116682. doi:10.1016/j.conbuildmat.2019.116682 es_ES
dc.description.references Angelillo, M. (2019). The model of Heyman and the statical and kinematical problems for masonry structures. International Journal of Masonry Research and Innovation, 4(1/2), 14. doi:10.1504/ijmri.2019.096820 es_ES
dc.description.references Cennamo, C., Cusano, C., & Angelillo, M. (2019). A limit analysis approach for masonry domes: the basilica of San Francesco di Paola in Naples. International Journal of Masonry Research and Innovation, 4(3), 227. doi:10.1504/ijmri.2019.100568 es_ES
dc.description.references Caporale, A., Feo, L., & Luciano, R. (2012). Limit analysis of FRP strengthened masonry arches via nonlinear and linear programming. Composites Part B: Engineering, 43(2), 439-446. doi:10.1016/j.compositesb.2011.05.019 es_ES
dc.description.references Fabbrocino, F., Farina, I., Berardi, V. P., Ferreira, A. J. M., & Fraternali, F. (2015). On the thrust surface of unreinforced and FRP-/FRCM-reinforced masonry domes. Composites Part B: Engineering, 83, 297-305. doi:10.1016/j.compositesb.2015.08.061 es_ES
dc.description.references Chiozzi, A., Milani, G., & Tralli, A. (2017). Fast Kinematic Limit Analysis of FRP-Reinforced Masonry Vaults. II: Numerical Simulations. Journal of Engineering Mechanics, 143(9), 04017072. doi:10.1061/(asce)em.1943-7889.0001268 es_ES
dc.description.references Pintucchi, B., & Zani, N. (2016). A simple model for performing nonlinear static and dynamic analyses of unreinforced and FRP-strengthened masonry arches. European Journal of Mechanics - A/Solids, 59, 210-231. doi:10.1016/j.euromechsol.2016.03.013 es_ES
dc.description.references Bertolesi, E., Milani, G., & Fedele, R. (2016). Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches. Composites Part B: Engineering, 88, 189-200. doi:10.1016/j.compositesb.2015.11.005 es_ES
dc.description.references Cancelliere, I., Imbimbo, M., & Sacco, E. (2010). Experimental tests and numerical modeling of reinforced masonry arches. Engineering Structures, 32(3), 776-792. doi:10.1016/j.engstruct.2009.12.005 es_ES
dc.description.references Carozzi, F. G., Poggi, C., Bertolesi, E., & Milani, G. (2018). Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation. Composite Structures, 187, 466-480. doi:10.1016/j.compstruct.2017.12.075 es_ES
dc.description.references D’Ambrisi, A., Feo, L., & Focacci, F. (2013). Masonry arches strengthened with composite unbonded tendons. Composite Structures, 98, 323-329. doi:10.1016/j.compstruct.2012.10.040 es_ES
dc.description.references Foraboschi, P. (2004). Strengthening of Masonry Arches with Fiber-Reinforced Polymer Strips. Journal of Composites for Construction, 8(3), 191-202. doi:10.1061/(asce)1090-0268(2004)8:3(191) es_ES
dc.description.references Valluzzi, M. R., Valdemarca, M., & Modena, C. (2001). Behavior of Brick Masonry Vaults Strengthened by FRP Laminates. Journal of Composites for Construction, 5(3), 163-169. doi:10.1061/(asce)1090-0268(2001)5:3(163) es_ES
dc.description.references Carrara, P., Ferretti, D., & Freddi, F. (2013). Debonding behavior of ancient masonry elements strengthened with CFRP sheets. Composites Part B: Engineering, 45(1), 800-810. doi:10.1016/j.compositesb.2012.04.029 es_ES
dc.description.references Capozucca, R., & Ricci, V. (2016). Bond of GFRP strips on modern and historic brickwork masonry. Composite Structures, 140, 540-555. doi:10.1016/j.compstruct.2015.12.047 es_ES
dc.description.references Capozucca, R. (2010). Experimental FRP/SRP–historic masonry delamination. Composite Structures, 92(4), 891-903. doi:10.1016/j.compstruct.2009.09.029 es_ES
dc.description.references Fedele, R., & Milani, G. (2010). A numerical insight into the response of masonry reinforced by FRP strips. The case of perfect adhesion. Composite Structures, 92(10), 2345-2357. doi:10.1016/j.compstruct.2010.03.014 es_ES
dc.description.references Fedele, R., & Milani, G. (2012). Assessment of bonding stresses between FRP sheets and masonry pillars during delamination tests. Composites Part B: Engineering, 43(4), 1999-2011. doi:10.1016/j.compositesb.2012.01.080 es_ES
dc.description.references Fedele, R., & Milani, G. (2011). Three-dimensional effects induced by FRP-from-masonry delamination. Composite Structures, 93(7), 1819-1831. doi:10.1016/j.compstruct.2011.01.022 es_ES
dc.description.references Foraboschi, P. (2016). Effectiveness of novel methods to increase the FRP-masonry bond capacity. Composites Part B: Engineering, 107, 214-232. doi:10.1016/j.compositesb.2016.09.060 es_ES
dc.description.references Grande, E., Imbimbo, M., & Sacco, E. (2011). Bond behaviour of CFRP laminates glued on clay bricks: Experimental and numerical study. Composites Part B: Engineering, 42(2), 330-340. doi:10.1016/j.compositesb.2010.09.020 es_ES
dc.description.references Grande, E., Imbimbo, M., & Sacco, E. (2011). Simple Model for Bond Behavior of Masonry Elements Strengthened with FRP. Journal of Composites for Construction, 15(3), 354-363. doi:10.1061/(asce)cc.1943-5614.0000170 es_ES
dc.description.references Grande, E., & Imbimbo, M. (2016). A simple 1D-Finite Element approach for the study of the bond behavior of masonry elements strengthened by FRP. Composites Part B: Engineering, 91, 548-558. doi:10.1016/j.compositesb.2016.02.005 es_ES
dc.description.references Hosseini, A., Mostofinejad, D., & Emami, M. (2015). Influence of bonding technique on bond behavior of CFRP-to-clay brick masonry joints: Experimental study using particle image velocimetry (PIV). International Journal of Adhesion and Adhesives, 59, 27-39. doi:10.1016/j.ijadhadh.2015.01.015 es_ES
dc.description.references Oliveira, D. V., Basilio, I., & Lourenço, P. B. (2011). Experimental Bond Behavior of FRP Sheets Glued on Brick Masonry. Journal of Composites for Construction, 15(1), 32-41. doi:10.1061/(asce)cc.1943-5614.0000147 es_ES
dc.description.references Rotunno, T., Rovero, L., Tonietti, U., & Bati, S. B. (2015). Experimental Study of Bond Behavior of CFRP-to-Brick Joints. Journal of Composites for Construction, 19(3), 04014063. doi:10.1061/(asce)cc.1943-5614.0000528 es_ES
dc.description.references Valluzzi, M. R., Oliveira, D. V., Caratelli, A., Castori, G., Corradi, M., de Felice, G., … Zuccarino, G. (2012). Round Robin Test for composite-to-brick shear bond characterization. Materials and Structures, 45(12), 1761-1791. doi:10.1617/s11527-012-9883-5 es_ES
dc.description.references Maljaee, H., Ghiassi, B., Lourenço, P. B., & Oliveira, D. V. (2016). FRP–brick masonry bond degradation under hygrothermal conditions. Composite Structures, 147, 143-154. doi:10.1016/j.compstruct.2016.03.037 es_ES
dc.description.references Maljaee, H., Ghiassi, B., Lourenço, P. B., & Oliveira, D. V. (2016). Moisture-induced degradation of interfacial bond in FRP-strengthened masonry. Composites Part B: Engineering, 87, 47-58. doi:10.1016/j.compositesb.2015.10.022 es_ES
dc.description.references Ghiassi, B., Verstrynge, E., Lourenço, P. B., & Oliveira, D. V. (2014). Characterization of debonding in FRP-strengthened masonry using the acoustic emission technique. Engineering Structures, 66, 24-34. doi:10.1016/j.engstruct.2014.01.050 es_ES
dc.description.references Ghiassi, B., Marcari, G., Oliveira, D. V., & Lourenço, P. B. (2012). Numerical analysis of bond behavior between masonry bricks and composite materials. Engineering Structures, 43, 210-220. doi:10.1016/j.engstruct.2012.05.022 es_ES
dc.description.references Ghiassi, B., Xavier, J., Oliveira, D. V., & Lourenço, P. B. (2013). Application of digital image correlation in investigating the bond between FRP and masonry. Composite Structures, 106, 340-349. doi:10.1016/j.compstruct.2013.06.024 es_ES
dc.description.references Ramirez, R., Maljaee, H., Ghiassi, B., Lourenço, P. B., & Oliveira, D. V. (2018). Bond behavior degradation between FRP and masonry under aggressive environmental conditions. Mechanics of Advanced Materials and Structures, 26(1), 6-14. doi:10.1080/15376494.2018.1534164 es_ES
dc.description.references Caggegi, C., Pensée, V., Fagone, M., Cuomo, M., & Chevalier, L. (2014). Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks. Construction and Building Materials, 53, 203-212. doi:10.1016/j.conbuildmat.2013.11.086 es_ES
dc.description.references Ceroni, F. (2017). Bond tests to evaluate the effectiveness of anchoring devices for CFRP sheets epoxy bonded over masonry elements. Composites Part B: Engineering, 113, 317-330. doi:10.1016/j.compositesb.2017.01.042 es_ES
dc.description.references Fagone, M., Ranocchiai, G., & Briccoli Bati, S. (2015). An experimental analysis about the effects of mortar joints on the efficiency of anchored CFRP-to-masonry reinforcements. Composites Part B: Engineering, 76, 133-148. doi:10.1016/j.compositesb.2015.01.050 es_ES
dc.description.references Fagone, M., Ranocchiai, G., Caggegi, C., Briccoli Bati, S., & Cuomo, M. (2014). The efficiency of mechanical anchors in CFRP strengthening of masonry: An experimental analysis. Composites Part B: Engineering, 64, 1-15. doi:10.1016/j.compositesb.2014.03.018 es_ES
dc.description.references Grande, E., Fagone, M., Rotunno, T., Bertolesi, E., & Milani, G. (2019). Modelling of the bond behaviour of curved masonry specimens strengthened by CFRP with anchor spikes. Composites Part B: Engineering, 171, 235-245. doi:10.1016/j.compositesb.2019.04.027 es_ES
dc.description.references Rotunno, T., Fagone, M., Bertolesi, E., Grande, E., & Milani, G. (2019). Curved masonry pillars reinforced with anchored CFRP sheets: An experimental analysis. Composites Part B: Engineering, 174, 107008. doi:10.1016/j.compositesb.2019.107008 es_ES
dc.description.references Basilio, I., Fedele, R., Lourenço, P. B., & Milani, G. (2014). Assessment of curved FRP-reinforced masonry prisms: Experiments and modeling. Construction and Building Materials, 51, 492-505. doi:10.1016/j.conbuildmat.2013.11.011 es_ES
dc.description.references Rotunno, T., Fagone, M., Bertolesi, E., Grande, E., & Milani, G. (2018). Single lap shear tests of masonry curved pillars externally strengthened by CFRP strips. Composite Structures, 200, 434-448. doi:10.1016/j.compstruct.2018.05.097 es_ES
dc.description.references Grande, E., Fagone, M., Rotunno, T., Bertolesi, E., & Milani, G. (2018). Coupled interface-based modelling approach for the numerical analysis of curved masonry specimens strengthened by CFRP. Composite Structures, 200, 498-506. doi:10.1016/j.compstruct.2018.05.118 es_ES
dc.description.references Bertolesi, E., Milani, G., Fagone, M., Rotunno, T., & Grande, E. (2018). Micro-mechanical FE numerical model for masonry curved pillars reinforced with FRP strips subjected to single lap shear tests. Composite Structures, 201, 916-931. doi:10.1016/j.compstruct.2018.06.111 es_ES
dc.description.references Grande, E., & Milani, G. (2016). Modeling of FRP-strengthened curved masonry specimens and proposal of a simple design formula. Composite Structures, 158, 281-290. doi:10.1016/j.compstruct.2016.09.017 es_ES
dc.description.references Bertolesi, E., Fabbrocino, F., Formisano, A., Grande, E., & Milani, G. (2017). FRP-Strengthening of Curved Masonry Structures: Local Bond Behavior and Global Response. Key Engineering Materials, 747, 134-141. doi:10.4028/www.scientific.net/kem.747.134 es_ES
dc.description.references Grande, E., Milani, G., Formisano, A., Ghiassi, B., & Fabbrocino, F. (2020). Bond behaviour of FRP strengthening applied on curved masonry substrates: numerical study. International Journal of Masonry Research and Innovation, 5(3), 303. doi:10.1504/ijmri.2020.107980 es_ES
dc.description.references MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc.; 2010. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem