- -

Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells

Show full item record

Ultimo, A.; De La Torre-Paredes, C.; Giménez, C.; Aznar, E.; Coll, C.; Marcos Martínez, MD.; Murguía, JR.... (2020). Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells. Chemical Communications. 56(53):7273-7276. https://doi.org/10.1039/d0cc02795b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162586

Files in this item

Item Metadata

Title: Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells
Author: Ultimo, Amelia De La Torre-Paredes, Cristina Giménez, Cristina Aznar, Elena Coll, Carmen Marcos Martínez, María Dolores Murguía, Jose R. Martínez-Máñez, Ramón Sancenón Galarza, Félix
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Nanoparticle-cell-nanoparticle communication by stigmergy was demonstrated using two capped nanodevices. The first community of nanoparticles (i.e.S(RA)(IFN)) is loaded with 9-cis-retinoic acid and capped with ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/d0cc02795b
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/d0cc02795b
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Thanks:
We thank the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/FEDER, EU)), Generalitat Valenciana (project PROMETEO2018/024) and CIBER-BBN (project NANOCOMMUNITY) for support. A. U. and C. ...[+]
Type: Artículo

References

Schaming, D., & Remita, H. (2015). Nanotechnology: from the ancient time to nowadays. Foundations of Chemistry, 17(3), 187-205. doi:10.1007/s10698-015-9235-y

Hauert, S., & Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 32(9), 448-455. doi:10.1016/j.tibtech.2014.06.010

Theraulaz, G., & Bonabeau, E. (1999). A Brief History of Stigmergy. Artificial Life, 5(2), 97-116. doi:10.1162/106454699568700 [+]
Schaming, D., & Remita, H. (2015). Nanotechnology: from the ancient time to nowadays. Foundations of Chemistry, 17(3), 187-205. doi:10.1007/s10698-015-9235-y

Hauert, S., & Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 32(9), 448-455. doi:10.1016/j.tibtech.2014.06.010

Theraulaz, G., & Bonabeau, E. (1999). A Brief History of Stigmergy. Artificial Life, 5(2), 97-116. doi:10.1162/106454699568700

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867

De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161

García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002

Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., … Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 6(1). doi:10.1038/srep34053

Van Rijt, S. H., Bölükbas, D. A., Argyo, C., Datz, S., Lindner, M., Eickelberg, O., … Meiners, S. (2015). Protease-Mediated Release of Chemotherapeutics from Mesoporous Silica Nanoparticles to ex Vivo Human and Mouse Lung Tumors. ACS Nano, 9(3), 2377-2389. doi:10.1021/nn5070343

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Bianchi, F., Pretto, S., Tagliabue, E., Balsari, A., & Sfondrini, L. (2017). Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biology & Therapy, 18(10), 747-756. doi:10.1080/15384047.2017.1373220

Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629

Bernardo, A. R., Cosgaya, J. M., Aranda, A., & Jiménez-Lara, A. M. (2013). Synergy between RA and TLR3 promotes type I IFN-dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death & Disease, 4(1), e479-e479. doi:10.1038/cddis.2013.5

Clarke, N., Jimenez-Lara, A. M., Voltz, E., & Gronemeyer, H. (2004). Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. The EMBO Journal, 23(15), 3051-3060. doi:10.1038/sj.emboj.7600302

Kajita, A. i., Morizane, S., Takiguchi, T., Yamamoto, T., Yamada, M., & Iwatsuki, K. (2015). Interferon-Gamma Enhances TLR3 Expression and Anti-Viral Activity in Keratinocytes. Journal of Investigative Dermatology, 135(8), 2005-2011. doi:10.1038/jid.2015.125

Weihua, X., Kolla, V., & Kalvakolanu, D. V. (1997). Modulation of Interferon Action by Retinoids. Journal of Biological Chemistry, 272(15), 9742-9748. doi:10.1074/jbc.272.15.9742

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record