- -

On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro, Francisco I. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Garrido, Neus es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2021-03-01T08:09:25Z
dc.date.available 2021-03-01T08:09:25Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 0893-9659 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162587
dc.description.abstract [EN] Iterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second order. The convergence of the proposed schemes is analyzed by means of Taylor expansions. Numerical examples are shown to compare the performance of the proposed schemes with other known ones, confirming the theoretical results. es_ES
dc.description.sponsorship This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), and Generalitat Valenciana PROMETEO/2016/089. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics Letters es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Nonlinear systems es_ES
dc.subject Iterative methods es_ES
dc.subject Divided difference operator es_ES
dc.subject Kurchatov divided difference es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.aml.2020.106277 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2020). On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters. 104:1-8. https://doi.org/10.1016/j.aml.2020.106277 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.aml.2020.106277 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 104 es_ES
dc.relation.pasarela S\423820 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9 es_ES
dc.description.references Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048 es_ES
dc.description.references A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Iterative methods with memory for solving systems of nonlinear equations using a second order approximation, Mathematics 7 (11). http://dx.doi.org/10.3390/math7111069. es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem