- -

Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Meirelles, Gustavo es_ES
dc.contributor.author Brentan, Bruno es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Luvizotto, Edevar, Jr. es_ES
dc.date.accessioned 2021-03-01T08:09:36Z
dc.date.available 2021-03-01T08:09:36Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162592
dc.description.abstract [EN] Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly outperforms the other algorithms. To strengthen GTA's value, various sensitivity analyses are performed to verify the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-based applications. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Processes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optimization es_ES
dc.subject Swarm optimization es_ES
dc.subject Benchmarking problems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/pr8080980 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Meirelles, G.; Brentan, B.; Izquierdo Sebastián, J.; Luvizotto, EJ. (2020). Grand Tour Algorithm: Novel Swarm-Based Optimization for High-Dimensional Problems. Processes. 8(8):1-19. https://doi.org/10.3390/pr8080980 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/pr8080980 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2227-9717 es_ES
dc.relation.pasarela S\417141 es_ES
dc.description.references Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501-1529. doi:10.1007/s13042-019-01053-x es_ES
dc.description.references Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. doi:10.1016/j.advengsoft.2016.01.008 es_ES
dc.description.references Chatterjee, A., & Siarry, P. (2006). Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research, 33(3), 859-871. doi:10.1016/j.cor.2004.08.012 es_ES
dc.description.references Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278. doi:10.1016/j.tcs.2005.05.020 es_ES
dc.description.references Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-x es_ES
dc.description.references Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-y es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Wu, Z. Y., & Simpson, A. R. (2002). A self-adaptive boundary search genetic algorithm and its application to water distribution systems. Journal of Hydraulic Research, 40(2), 191-203. doi:10.1080/00221680209499862 es_ES
dc.description.references Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317-325. doi:10.1016/s0020-0190(02)00447-7 es_ES
dc.description.references Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management, 144(9), 04018055. doi:10.1061/(asce)wr.1943-5452.0000974 es_ES
dc.description.references Freire, R. Z., Oliveira, G. H. C., & Mendes, N. (2008). Predictive controllers for thermal comfort optimization and energy savings. Energy and Buildings, 40(7), 1353-1365. doi:10.1016/j.enbuild.2007.12.007 es_ES
dc.description.references Bollinger, L. A., & Evins, R. (2015). Facilitating Model Reuse and Integration in an Urban Energy Simulation Platform. Procedia Computer Science, 51, 2127-2136. doi:10.1016/j.procs.2015.05.484 es_ES
dc.description.references Yang, Y., & Chui, T. F. M. (2019). Developing a Flexible Simulation-Optimization Framework to Facilitate Sustainable Urban Drainage Systems Designs Through Software Reuse. Reuse in the Big Data Era, 94-99. doi:10.1007/978-3-030-22888-0_7 es_ES
dc.description.references Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1-17. doi:10.1016/j.swevo.2016.12.005 es_ES
dc.description.references Hybinette, M., & Fujimoto, R. M. (2001). Cloning parallel simulations. ACM Transactions on Modeling and Computer Simulation, 11(4), 378-407. doi:10.1145/508366.508370 es_ES
dc.description.references Proceedings of the 2004 Winter Simulation Conference (IEEE Cat. No.04CH37614C). (2004). Proceedings of the 2004 Winter Simulation Conference, 2004. doi:10.1109/wsc.2004.1371294 es_ES
dc.description.references Li, Z., Wang, W., Yan, Y., & Li, Z. (2015). PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Systems with Applications, 42(22), 8881-8895. doi:10.1016/j.eswa.2015.07.043 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 es_ES
dc.description.references Heuristic Optimization. (s. f.). Advances in Computational Management Science, 38-76. doi:10.1007/0-387-25853-1_2 es_ES
dc.description.references Zong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201 es_ES
dc.description.references Blocken, B., van Druenen, T., Toparlar, Y., Malizia, F., Mannion, P., Andrianne, T., … Diepens, J. (2018). Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 179, 319-337. doi:10.1016/j.jweia.2018.06.011 es_ES
dc.description.references Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. doi:10.1109/4235.985692 es_ES
dc.description.references GAMS World, GLOBAL Libraryhttp://www.gamsworld.org/global/globallib.html es_ES
dc.description.references CUTEr, A Constrained and Un-Constrained Testing Environment, Revisitedhttp://cuter.rl.ac.uk/cuter-www/problems.html es_ES
dc.description.references GO Test Problemshttp://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm es_ES
dc.description.references Jamil, M., & Yang, X. S. (2013). A literature survey of benchmark functions for global optimisation problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150. doi:10.1504/ijmmno.2013.055204 es_ES
dc.description.references Sharma, G. (2012). The Human Genome Project and its promise. Journal of Indian College of Cardiology, 2(1), 1-3. doi:10.1016/s1561-8811(12)80002-2 es_ES
dc.description.references Li, W. (2011). On parameters of the human genome. Journal of Theoretical Biology, 288, 92-104. doi:10.1016/j.jtbi.2011.07.021 es_ES
dc.description.references Hughes, M., Goerigk, M., & Wright, M. (2019). A largest empty hypersphere metaheuristic for robust optimisation with implementation uncertainty. Computers & Operations Research, 103, 64-80. doi:10.1016/j.cor.2018.10.013 es_ES
dc.description.references Zaeimi, M., & Ghoddosian, A. (2020). Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Computing, 24(16), 12027-12066. doi:10.1007/s00500-019-04646-4 es_ES
dc.description.references Singh, G. P., & Singh, A. (2014). Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal and Multimodal Optimization. International Journal of Intelligent Systems and Applications in Engineering, 2(3), 26. doi:10.18201/ijisae.31981 es_ES
dc.description.references Taheri, S. M., & Hesamian, G. (2012). A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers, 54(2), 457-470. doi:10.1007/s00362-012-0443-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem