Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez Benítez, Antonio Luis | es_ES |
dc.contributor.author | Ferrer Polo, Francisco Javier | es_ES |
dc.contributor.author | Greses, Silvia | es_ES |
dc.contributor.author | Ruiz-Martínez, Ana | es_ES |
dc.contributor.author | Fatone, Francesco | es_ES |
dc.contributor.author | Eusebi, Anna Laura | es_ES |
dc.contributor.author | Mondéjar, Nieves | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.contributor.author | Seco, Aurora | es_ES |
dc.date.accessioned | 2021-03-01T08:09:54Z | |
dc.date.available | 2021-03-01T08:09:54Z | |
dc.date.issued | 2020-10-10 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162598 | |
dc.description.abstract | [EN] The use of anaerobic membrane bioreactor (AnMBR) technology on urban wastewater can help to alleviate droughts, by reusing the water and nutrients embedded in the effluent in agriculture (fertigation) in line with Circular Economy principles. The combination of AnMBR and fertigation reduces CO2 emissions due to the organic matter valorization and the partial avoidance of mineral fertilizer requirements. However, both AnMBR and fertigation still face technological and regulatory barriers that need to be overcome. These bottlenecks were tackled within the first Innovation Deal approved by the European Commission in 2016, and gave rise to several case studies on water reuse systems. The results of the Oliva Wastewater Treatment Plant (Spain) and Peschiera-Borromeo Wastewater Treatment Plant (Italy) showed that reclaimed water can be considered as a reliable water and nutrient source, return a positive economic balance (up to 376 k(sic).year(-1)) and provide significant reductions and savings in CO2 emissions (up to -898.9 tCO(2).year(-1)). According to the new EU regulation, a new key player known as the Reclaimed Water Manager, was also proposed to be in charge of supplying reclaimed water with appropriate quantity and quality to end-users. This new agent would also be responsible for drawing up and implementing a Water Reuse Risk Management Plan in cooperation with the parties involved. Applying AnMBR technology to water reuse thus shows potential for contributing to catchment-scale Circular Economy while preserving natural water bodies, reducing the carbon footprint and creating new business opportunities. However, to take full advantage of its benefits demonstration projects would need to be carried out and favorable and harmonized regulations among the EU States would need to be adopted. | es_ES |
dc.description.sponsorship | Gruppo CAP is kindly acknowledged for the data and collaboration provided for the Peschiera Borromeo case study. The PhD candidate Alessia Foglia is kindly acknowledged for the scientific collaboration during her master thesis. Finally, the consortium of the European Union's Horizon2020 SMART-Plant Innovation Action (grant agreement No 690323) is acknowledged for availability to formally join the Innovation Deal. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Agricultural water reuse | es_ES |
dc.subject | Anaerobic digestion | es_ES |
dc.subject | Membrane technology | es_ES |
dc.subject | Reclaimed water | es_ES |
dc.subject | Nutrient recovery and reuse | es_ES |
dc.subject | Sustainability assessment | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2020.122398 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690323/EU/Scale-up of low-carbon footprint material recovery techniques in existing wastewater treatment plants/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Jiménez Benítez, AL.; Ferrer Polo, FJ.; Greses, S.; Ruiz-Martínez, A.; Fatone, F.; Eusebi, AL.; Mondéjar, N.... (2020). AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production. 270:1-14. https://doi.org/10.1016/j.jclepro.2020.122398 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2020.122398 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 270 | es_ES |
dc.relation.pasarela | S\414038 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139 | es_ES |
dc.description.references | Aslam, M., Ahmad, R., & Kim, J. (2018). Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Separation and Purification Technology, 206, 297-315. doi:10.1016/j.seppur.2018.06.004 | es_ES |
dc.description.references | Foglia, A., Akyol, Ç., Frison, N., Katsou, E., Eusebi, A. L., & Fatone, F. (2020). Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment. Separation and Purification Technology, 236, 116279. doi:10.1016/j.seppur.2019.116279 | es_ES |
dc.description.references | Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 | es_ES |
dc.description.references | Hussain, M. I., Muscolo, A., Farooq, M., & Ahmad, W. (2019). Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agricultural Water Management, 221, 462-476. doi:10.1016/j.agwat.2019.04.014 | es_ES |
dc.description.references | Judd, S. J. (2017). Membrane technology costs and me. Water Research, 122, 1-9. doi:10.1016/j.watres.2017.05.027 | es_ES |
dc.description.references | Ledger, M. E., Harris, R. M. L., Armitage, P. D., & Milner, A. M. (2012). Climate Change Impacts on Community Resilience. Global Change in Multispecies Systems Part 1, 211-258. doi:10.1016/b978-0-12-396992-7.00003-4 | es_ES |
dc.description.references | Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., … Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358-372. doi:10.1016/j.biortech.2019.03.061 | es_ES |
dc.description.references | McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264 | es_ES |
dc.description.references | Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036 | es_ES |
dc.description.references | Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060 | es_ES |
dc.description.references | Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106 | es_ES |
dc.description.references | Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 | es_ES |
dc.description.references | Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 | es_ES |
dc.description.references | Velasco, P., Jegatheesan, V., & Othman, M. (2018). Recovery of Dissolved Methane From Anaerobic Membrane Bioreactor Using Degassing Membrane Contactors. Frontiers in Environmental Science, 6. doi:10.3389/fenvs.2018.00151 | es_ES |
dc.description.references | Ventura, D., Consoli, S., Barbagallo, S., Marzo, A., Vanella, D., Licciardello, F., & Cirelli, G. (2019). How to Overcome Barriers for Wastewater Agricultural Reuse in Sicily (Italy)? Water, 11(2), 335. doi:10.3390/w11020335 | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |