- -

AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez Benítez, Antonio Luis es_ES
dc.contributor.author Ferrer Polo, Francisco Javier es_ES
dc.contributor.author Greses, Silvia es_ES
dc.contributor.author Ruiz-Martínez, Ana es_ES
dc.contributor.author Fatone, Francesco es_ES
dc.contributor.author Eusebi, Anna Laura es_ES
dc.contributor.author Mondéjar, Nieves es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Seco, Aurora es_ES
dc.date.accessioned 2021-03-01T08:09:54Z
dc.date.available 2021-03-01T08:09:54Z
dc.date.issued 2020-10-10 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162598
dc.description.abstract [EN] The use of anaerobic membrane bioreactor (AnMBR) technology on urban wastewater can help to alleviate droughts, by reusing the water and nutrients embedded in the effluent in agriculture (fertigation) in line with Circular Economy principles. The combination of AnMBR and fertigation reduces CO2 emissions due to the organic matter valorization and the partial avoidance of mineral fertilizer requirements. However, both AnMBR and fertigation still face technological and regulatory barriers that need to be overcome. These bottlenecks were tackled within the first Innovation Deal approved by the European Commission in 2016, and gave rise to several case studies on water reuse systems. The results of the Oliva Wastewater Treatment Plant (Spain) and Peschiera-Borromeo Wastewater Treatment Plant (Italy) showed that reclaimed water can be considered as a reliable water and nutrient source, return a positive economic balance (up to 376 k(sic).year(-1)) and provide significant reductions and savings in CO2 emissions (up to -898.9 tCO(2).year(-1)). According to the new EU regulation, a new key player known as the Reclaimed Water Manager, was also proposed to be in charge of supplying reclaimed water with appropriate quantity and quality to end-users. This new agent would also be responsible for drawing up and implementing a Water Reuse Risk Management Plan in cooperation with the parties involved. Applying AnMBR technology to water reuse thus shows potential for contributing to catchment-scale Circular Economy while preserving natural water bodies, reducing the carbon footprint and creating new business opportunities. However, to take full advantage of its benefits demonstration projects would need to be carried out and favorable and harmonized regulations among the EU States would need to be adopted. es_ES
dc.description.sponsorship Gruppo CAP is kindly acknowledged for the data and collaboration provided for the Peschiera Borromeo case study. The PhD candidate Alessia Foglia is kindly acknowledged for the scientific collaboration during her master thesis. Finally, the consortium of the European Union's Horizon2020 SMART-Plant Innovation Action (grant agreement No 690323) is acknowledged for availability to formally join the Innovation Deal. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Agricultural water reuse es_ES
dc.subject Anaerobic digestion es_ES
dc.subject Membrane technology es_ES
dc.subject Reclaimed water es_ES
dc.subject Nutrient recovery and reuse es_ES
dc.subject Sustainability assessment es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2020.122398 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690323/EU/Scale-up of low-carbon footprint material recovery techniques in existing wastewater treatment plants/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Jiménez Benítez, AL.; Ferrer Polo, FJ.; Greses, S.; Ruiz-Martínez, A.; Fatone, F.; Eusebi, AL.; Mondéjar, N.... (2020). AnMBR, reclaimed water and fertigation: Two case studies in Italy and Spain to assess economic and technological feasibility and CO2 emissions within the EU Innovation Deal initiative. Journal of Cleaner Production. 270:1-14. https://doi.org/10.1016/j.jclepro.2020.122398 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2020.122398 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 270 es_ES
dc.relation.pasarela S\414038 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160-170. doi:10.1016/j.biortech.2012.05.139 es_ES
dc.description.references Aslam, M., Ahmad, R., & Kim, J. (2018). Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Separation and Purification Technology, 206, 297-315. doi:10.1016/j.seppur.2018.06.004 es_ES
dc.description.references Foglia, A., Akyol, Ç., Frison, N., Katsou, E., Eusebi, A. L., & Fatone, F. (2020). Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment. Separation and Purification Technology, 236, 116279. doi:10.1016/j.seppur.2019.116279 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Hussain, M. I., Muscolo, A., Farooq, M., & Ahmad, W. (2019). Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agricultural Water Management, 221, 462-476. doi:10.1016/j.agwat.2019.04.014 es_ES
dc.description.references Judd, S. J. (2017). Membrane technology costs and me. Water Research, 122, 1-9. doi:10.1016/j.watres.2017.05.027 es_ES
dc.description.references Ledger, M. E., Harris, R. M. L., Armitage, P. D., & Milner, A. M. (2012). Climate Change Impacts on Community Resilience. Global Change in Multispecies Systems Part 1, 211-258. doi:10.1016/b978-0-12-396992-7.00003-4 es_ES
dc.description.references Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., … Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358-372. doi:10.1016/j.biortech.2019.03.061 es_ES
dc.description.references McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264 es_ES
dc.description.references Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89-104. doi:10.1016/j.seppur.2013.06.036 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060 es_ES
dc.description.references Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.02106 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 es_ES
dc.description.references Velasco, P., Jegatheesan, V., & Othman, M. (2018). Recovery of Dissolved Methane From Anaerobic Membrane Bioreactor Using Degassing Membrane Contactors. Frontiers in Environmental Science, 6. doi:10.3389/fenvs.2018.00151 es_ES
dc.description.references Ventura, D., Consoli, S., Barbagallo, S., Marzo, A., Vanella, D., Licciardello, F., & Cirelli, G. (2019). How to Overcome Barriers for Wastewater Agricultural Reuse in Sicily (Italy)? Water, 11(2), 335. doi:10.3390/w11020335 es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem