- -

Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Romero, Ismael es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Figuera, Carlos es_ES
dc.contributor.author Atienza, Felipe es_ES
dc.contributor.author Fernández-Avilés, Francisco es_ES
dc.contributor.author Martínez Climent, Batiste Andreu es_ES
dc.date.accessioned 2021-03-01T08:10:12Z
dc.date.available 2021-03-01T08:10:12Z
dc.date.issued 2019-05-14 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162604
dc.description.abstract [EN] Background Alternans have been associated with the development of ventricular fibrillation and its control has been proposed as antiarrhythmic strategy. However, cardiac arrhythmias are a spatiotemporal phenomenon in which multiple factors are involved (e.g. calcium and voltage spatial alternans or heterogeneous conduction velocity) and how an antiarrhythmic drug modifies these factors is poorly understood. Objective The objective of the present study is to evaluate the relation between spatial electrophysiological properties (i.e. spatial discordant alternans and conduction velocity) and the induction of ventricular fibrillation (VF) when a calcium blocker is applied. Methods The mechanisms of initiation of VF were studied by simultaneous epicardial voltage and calcium optical mapping in isolated rabbit hearts using an incremental fast pacing protocol. The additional value of analyzing spatial phenomena in the generation of unidirectional blocks and reentries as precursors of VF was depicted. Specifically, the role of action potential duration (APD), calcium transients (CaT), spatial alternans and conduction velocity in the initiation of VF was evaluated during basal conditions and after the administration of verapamil. Results Our results enhance the relation between (1) calcium spatial alternans and (2) slow conduction velocities with the dynamic creation of unidirectional blocks that allowed the induction of VF. In fact, the administration of verapamil demonstrated that calcium and not voltage spatial alternans were the main responsible for VF induction. Conclusions VF induction at high activation rates was linked with the concurrence of a low conduction velocity and high magnitude of calcium alternans, but not necessarily related with increases of APD. Verapamil can postpone the development of cardiac alternans and the apparition of ventricular arrhythmias. es_ES
dc.description.sponsorship This work was funded in part by the CIBERCV (Centro de Investigacion Biomedica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III (PI14/00857, PI16/01123, DTS16/0160, PI17/01059, PI17/01106 and IJCI-2014-22178); Spanish Ministry of Ecomomy (TEC2013-46067-R); Generalitat Valenciana Grants (APOSTD/2017 and APOSTD/2018) and projects (GVA/2018/103), EIT-Health 19600 AFFINE and cofound by FEDER. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0215951 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI14%2F00857/ES/Caracterización No-invasiva de los Mecanismos de Mantenimiento de la Fibrilación Auricular. Estudio PERSONALIZE-AF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F032/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-46067-R/ES/ESTIMACION NO INVASIVA DE LA ACTIVIDAD ELECTRICA CARDIACA MEDIANTE OPTIMIZACION CONVEXA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DTS16%2F00160/ES/Guiado en Tiempo Real de la Ablación de la Fibrilación Auricular mediante Cartografía Eléctrica Global (CORIFY)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-22178/ES/IJCI-2014-22178/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01059/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/STRATIFY-AF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F103/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI17%2F01106/ES/Estratificación y tratamiento de la fibrilación auricular basada en los mecanismos de perpetuación de la arritmia/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Hernández-Romero, I.; Guillem Sánchez, MS.; Figuera, C.; Atienza, F.; Fernández-Avilés, F.; Martínez Climent, BA. (2019). Optical imaging of voltage and calcium in isolated hearts: Linking spatiotemporal heterogeneities and ventricular fibrillation initiation. PLoS ONE. 14(5):1-15. https://doi.org/10.1371/journal.pone.0215951 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0215951 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 31086382 es_ES
dc.identifier.pmcid PMC6516663 es_ES
dc.relation.pasarela S\409195 es_ES
dc.contributor.funder EIT Health es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares es_ES
dc.description.references Hayashi, M., Shimizu, W., & Albert, C. M. (2015). The Spectrum of Epidemiology Underlying Sudden Cardiac Death. Circulation Research, 116(12), 1887-1906. doi:10.1161/circresaha.116.304521 es_ES
dc.description.references Karma, A. (1994). Electrical alternans and spiral wave breakup in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science, 4(3), 461-472. doi:10.1063/1.166024 es_ES
dc.description.references Weiss, J. N., Garfinkel, A., Karagueuzian, H. S., Qu, Z., & Chen, P.-S. (1999). Chaos and the Transition to Ventricular Fibrillation. Circulation, 99(21), 2819-2826. doi:10.1161/01.cir.99.21.2819 es_ES
dc.description.references Hayashi, H., Shiferaw, Y., Sato, D., Nihei, M., Lin, S.-F., Chen, P.-S., … Qu, Z. (2007). Dynamic Origin of Spatially Discordant Alternans in Cardiac Tissue. Biophysical Journal, 92(2), 448-460. doi:10.1529/biophysj.106.091009 es_ES
dc.description.references Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., & Laurita, K. R. (2004). Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans. Circulation Research, 94(8), 1083-1090. doi:10.1161/01.res.0000125629.72053.95 es_ES
dc.description.references Opthof, T., Remme, C. A., Jorge, E., Noriega, F., Wiegerinck, R. F., Tasiam, A., … Cinca, J. (2017). Cardiac activation–repolarization patterns and ion channel expression mapping in intact isolated normal human hearts. Heart Rhythm, 14(2), 265-272. doi:10.1016/j.hrthm.2016.10.010 es_ES
dc.description.references Wilson, F. N., Macleod, A. G., Barker, P. S., & Johnston, F. D. (1934). The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. American Heart Journal, 10(1), 46-61. doi:10.1016/s0002-8703(34)90303-3 es_ES
dc.description.references Ashman, R., & Byer, E. (1943). The normal human ventricular gradient. American Heart Journal, 25(1), 16-35. doi:10.1016/s0002-8703(43)90379-5 es_ES
dc.description.references Pastore, J. M., Girouard, S. D., Laurita, K. R., Akar, F. G., & Rosenbaum, D. S. (1999). Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 99(10), 1385-1394. doi:10.1161/01.cir.99.10.1385 es_ES
dc.description.references Qu, Z., Garfinkel, A., Chen, P.-S., & Weiss, J. N. (2000). Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue. Circulation, 102(14), 1664-1670. doi:10.1161/01.cir.102.14.1664 es_ES
dc.description.references Mironov, S., Jalife, J., & Tolkacheva, E. G. (2008). Role of Conduction Velocity Restitution and Short-Term Memory in the Development of Action Potential Duration Alternans in Isolated Rabbit Hearts. Circulation, 118(1), 17-25. doi:10.1161/circulationaha.107.737254 es_ES
dc.description.references Swissa, M., Qu, Z., Ohara, T., Lee, M.-H., Lin, S.-F., Garfinkel, A., … Chen, P.-S. (2002). Action potential duration restitution and ventricular fibrillation due to rapid focal excitation. American Journal of Physiology-Heart and Circulatory Physiology, 282(5), H1915-H1923. doi:10.1152/ajpheart.00867.2001 es_ES
dc.description.references Hirayama, Y., Saitoh, H., Atarashi, H., & Hayakawa, H. (1993). Electrical and mechanical alternans in canine myocardium in vivo. Dependence on intracellular calcium cycling. Circulation, 88(6), 2894-2902. doi:10.1161/01.cir.88.6.2894 es_ES
dc.description.references Riccio, M. L., Koller, M. L., & Gilmour, R. F. (1999). Electrical Restitution and Spatiotemporal Organization During Ventricular Fibrillation. Circulation Research, 84(8), 955-963. doi:10.1161/01.res.84.8.955 es_ES
dc.description.references Jin, Q., Dosdall, D. J., Li, L., Rogers, J. M., Ideker, R. E., & Huang, J. (2014). Verapamil reduces incidence of reentry during ventricular fibrillation in pigs. American Journal of Physiology-Heart and Circulatory Physiology, 307(9), H1361-H1369. doi:10.1152/ajpheart.00256.2014 es_ES
dc.description.references Lee, P., Yan, P., Ewart, P., Kohl, P., Loew, L. M., & Bollensdorff, C. (2012). Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques. Pflügers Archiv - European Journal of Physiology, 464(4), 403-414. doi:10.1007/s00424-012-1135-6 es_ES
dc.description.references Wang, K., Lee, P., Mirams, G. R., Sarathchandra, P., Borg, T. K., Gavaghan, D. J., … Bollensdorff, C. (2015). Cardiac tissue slices: preparation, handling, and successful optical mapping. American Journal of Physiology-Heart and Circulatory Physiology, 308(9), H1112-H1125. doi:10.1152/ajpheart.00556.2014 es_ES
dc.description.references Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., & Efimov, I. R. (2012). Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H753-H765. doi:10.1152/ajpheart.00404.2012 es_ES
dc.description.references Gizzi, A., Cherry, E. M., Gilmour, R. F., Luther, S., Filippi, S., & Fenton, F. H. (2013). Effects of Pacing Site and Stimulation History on Alternans Dynamics and the Development of Complex Spatiotemporal Patterns in Cardiac Tissue. Frontiers in Physiology, 4. doi:10.3389/fphys.2013.00071 es_ES
dc.description.references VISWESWARAN, R., McINTYRE, S. D., RAMKRISHNAN, K., ZHAO, X., & TOLKACHEVA, E. G. (2013). Spatiotemporal Evolution and Prediction of [Ca2+ ]i and APD Alternans in Isolated Rabbit Hearts. Journal of Cardiovascular Electrophysiology, 24(11), 1287-1295. doi:10.1111/jce.12200 es_ES
dc.description.references Bayly, P. V., KenKnight, B. H., Rogers, J. M., Hillsley, R. E., Ideker, R. E., & Smith, W. M. (1998). Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Transactions on Biomedical Engineering, 45(5), 563-571. doi:10.1109/10.668746 es_ES
dc.description.references Liberos, A., Bueno-Orovio, A., Rodrigo, M., Ravens, U., Hernandez-Romero, I., Fernandez-Aviles, F., … Climent, A. M. (2016). Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study. Heart Rhythm, 13(12), 2358-2365. doi:10.1016/j.hrthm.2016.08.028 es_ES
dc.description.references Trujillo-Pino, A., Krissian, K., Alemán-Flores, M., & Santana-Cedrés, D. (2013). Accurate subpixel edge location based on partial area effect. Image and Vision Computing, 31(1), 72-90. doi:10.1016/j.imavis.2012.10.005 es_ES
dc.description.references Krummen, D. E., Ho, G., Villongco, C. T., Hayase, J., & Schricker, A. A. (2016). Ventricular fibrillation: triggers, mechanisms and therapies. Future Cardiology, 12(3), 373-390. doi:10.2217/fca-2016-0001 es_ES
dc.description.references Garfinkel, A., Kim, Y.-H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M.-H., … Chen, P.-S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11), 6061-6066. doi:10.1073/pnas.090492697 es_ES
dc.description.references Nachimuthu, S., Assar, M. D., & Schussler, J. M. (2012). Drug-induced QT interval prolongation: mechanisms and clinical management. Therapeutic Advances in Drug Safety, 3(5), 241-253. doi:10.1177/2042098612454283 es_ES
dc.description.references Torres, V., Tepper, D., Flowers, D., Wynn, J., Lam, S., Keefe, D., … Somberg, J. C. (1986). QT prolongation and the antiarrhythmic efficacy of amiodarone. Journal of the American College of Cardiology, 7(1), 142-147. doi:10.1016/s0735-1097(86)80272-8 es_ES
dc.description.references Pueyo, E., Smetana, P., Caminal, P., deLuna, A. B., Malik, M., & Laguna, P. (2004). Characterization of QT Interval Adaptation to RR Interval Changes and Its Use as a Risk-Stratifier of Arrhythmic Mortality in Amiodarone-Treated Survivors of Acute Myocardial Infarction. IEEE Transactions on Biomedical Engineering, 51(9), 1511-1520. doi:10.1109/tbme.2004.828050 es_ES
dc.description.references Noujaim, S. F., Auerbach, D. S., & Jalife, J. (2007). Ventricular Fibrillation. Circulation Journal, 71(SupplementA), A1-A11. doi:10.1253/circj.71.a1 es_ES
dc.description.references Choi, B., & Salama, G. (2000). Simultaneous maps of optical action potentials and calcium transients in guinea‐pig hearts: mechanisms underlying concordant alternans. The Journal of Physiology, 529(1), 171-188. doi:10.1111/j.1469-7793.2000.00171.x es_ES
dc.description.references Cao, J.-M., Qu, Z., Kim, Y.-H., Wu, T.-J., Garfinkel, A., Weiss, J. N., … Chen, P.-S. (1999). Spatiotemporal Heterogeneity in the Induction of Ventricular Fibrillation by Rapid Pacing. Circulation Research, 84(11), 1318-1331. doi:10.1161/01.res.84.11.1318 es_ES
dc.description.references De Diego, C., Pai, R. K., Dave, A. S., Lynch, A., Thu, M., Chen, F., … Valderrábano, M. (2008). Spatially discordant alternans in cardiomyocyte monolayers. American Journal of Physiology-Heart and Circulatory Physiology, 294(3), H1417-H1425. doi:10.1152/ajpheart.01233.2007 es_ES
dc.description.references Aistrup, G. L., Kelly, J. E., Kapur, S., Kowalczyk, M., Sysman-Wolpin, I., Kadish, A. H., & Wasserstrom, J. A. (2006). Pacing-induced Heterogeneities in Intracellular Ca2+Signaling, Cardiac Alternans, and Ventricular Arrhythmias in Intact Rat Heart. Circulation Research, 99(7). doi:10.1161/01.res.0000244087.36230.bf es_ES
dc.description.references Chudin, E., Goldhaber, J., Garfinkel, A., Weiss, J., & Kogan, B. (1999). Intracellular Ca2+ Dynamics and the Stability of Ventricular Tachycardia. Biophysical Journal, 77(6), 2930-2941. doi:10.1016/s0006-3495(99)77126-2 es_ES
dc.description.references Sato, D., Bers, D. M., & Shiferaw, Y. (2013). Formation of Spatially Discordant Alternans Due to Fluctuations and Diffusion of Calcium. PLoS ONE, 8(12), e85365. doi:10.1371/journal.pone.0085365 es_ES
dc.description.references Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836 es_ES
dc.description.references Morotti, S., Grandi, E., Summa, A., Ginsburg, K. S., & Bers, D. M. (2012). Theoretical study of L-type Ca2+current inactivation kinetics during action potential repolarization and early afterdepolarizations. The Journal of Physiology, 590(18), 4465-4481. doi:10.1113/jphysiol.2012.231886 es_ES
dc.description.references Harada, M., Tsuji, Y., Ishiguro, Y. S., Takanari, H., Okuno, Y., Inden, Y., … Kodama, I. (2011). Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. American Journal of Physiology-Heart and Circulatory Physiology, 300(2), H565-H573. doi:10.1152/ajpheart.00209.2010 es_ES
dc.description.references Hwang, G.-S., Hayashi, H., Tang, L., Ogawa, M., Hernandez, H., Tan, A. Y., … Chen, P.-S. (2006). Intracellular Calcium and Vulnerability to Fibrillation and Defibrillation in Langendorff-Perfused Rabbit Ventricles. Circulation, 114(24), 2595-2603. doi:10.1161/circulationaha.106.630509 es_ES
dc.description.references Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K. P., Bers, D. M., & Ripplinger, C. M. (2014). Optical Mapping of Sarcoplasmic Reticulum Ca 2+ in the Intact Heart. Circulation Research, 114(9), 1410-1421. doi:10.1161/circresaha.114.302505 es_ES
dc.description.references Wagner, S., Maier, L. S., & Bers, D. M. (2015). Role of Sodium and Calcium Dysregulation in Tachyarrhythmias in Sudden Cardiac Death. Circulation Research, 116(12), 1956-1970. doi:10.1161/circresaha.116.304678 es_ES
dc.description.references Chorro, F. J., Cánoves, J., Guerrero, J., Mainar, L., Sanchis, J., Such, L., & López-Merino, V. (2000). Alteration of Ventricular Fibrillation by Flecainide, Verapamil, and Sotalol. Circulation, 101(13), 1606-1615. doi:10.1161/01.cir.101.13.1606 es_ES
dc.description.references BANVILLE, I., & GRAY, R. A. (2002). Effect of Action Potential Duration and Conduction Velocity Restitution and Their Spatial Dispersion on Alternans and the Stability of Arrhythmias. Journal of Cardiovascular Electrophysiology, 13(11), 1141-1149. doi:10.1046/j.1540-8167.2002.01141.x es_ES
dc.description.references Samie, F. H., Mandapati, R., Gray, R. A., Watanabe, Y., Zuur, C., Beaumont, J., & Jalife, J. (2000). A Mechanism of Transition From Ventricular Fibrillation to Tachycardia. Circulation Research, 86(6), 684-691. doi:10.1161/01.res.86.6.684 es_ES
dc.description.references Ikeda, T., Yoshino, H., Sugi, K., Tanno, K., Shimizu, H., Watanabe, J., … Kato, T. (2006). Predictive Value of Microvolt T-Wave Alternans for Sudden Cardiac Death in Patients With Preserved Cardiac Function After Acute Myocardial Infarction. Journal of the American College of Cardiology, 48(11), 2268-2274. doi:10.1016/j.jacc.2006.06.075 es_ES
dc.description.references Wiegerinck, R. F., Verkerk, A. O., Belterman, C. N., van Veen, T. A. B., Baartscheer, A., Opthof, T., … Coronel, R. (2006). Larger Cell Size in Rabbits With Heart Failure Increases Myocardial Conduction Velocity and QRS Duration. Circulation, 113(6), 806-813. doi:10.1161/circulationaha.105.565804 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem