Mostrar el registro sencillo del ítem
dc.contributor.author | Izquierdo-Pérez, Jorge | es_ES |
dc.contributor.author | Brentan, Bruno M. | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Clausen, Niels-Erik | es_ES |
dc.contributor.author | Pegalajar-Jurado, Antonio | es_ES |
dc.contributor.author | Ebsen, Nis | es_ES |
dc.date.accessioned | 2021-03-01T08:10:29Z | |
dc.date.available | 2021-03-01T08:10:29Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162609 | |
dc.description.abstract | [EN] Offshore floating hybrid wind and wave energy is a young technology yet to be scaled up. A way to reduce the total costs of the energy production process in order to ensure competitiveness in the sustainable energy market is to maximize the farm's efficiency. To do so, an energy generation and costs calculation model was developed with the objective of minimizing the technology's Levelized Cost of Energy (LCOE) of the P80 hybrid wind-wave concept, designed by the company Floating Power Plant A/S. A Particle Swarm Optimization (PSO) algorithm was then implemented on top of other technical and decision-making processes, taking as decision variables the layout, the offshore substation position, and the export cable choice. The process was applied off the west coast of Ireland in a site of interest for the company, and after a quantitative and qualitative optimization process, a minimized LCOE was obtained. It was then found that lower costs of similar to 73% can be reached in the short-term, and the room for improvement in the structure's design and materials was highlighted, with an LCOE reduction potential of up to 32%. The model serves usefully as a preliminary analysis. However, the uncertainty estimate of 11% indicates that further site-specific studies and measurements are essential. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Processes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainable energy generation | es_ES |
dc.subject | Floating offshore energy generation | es_ES |
dc.subject | Hybrid wind-wave platform | es_ES |
dc.subject | LCOE | es_ES |
dc.subject | Farm layout | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Particle Swarm Optimization | es_ES |
dc.subject | PSO | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/pr8020139 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Izquierdo-Pérez, J.; Brentan, BM.; Izquierdo Sebastián, J.; Clausen, N.; Pegalajar-Jurado, A.; Ebsen, N. (2020). Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm. Processes. 8(2):1-23. https://doi.org/10.3390/pr8020139 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/pr8020139 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2227-9717 | es_ES |
dc.relation.pasarela | S\401106 | es_ES |
dc.description.references | Wind Power Capacity Worldwide Reaches 597 GW, 50.1 GWhttps://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/ | es_ES |
dc.description.references | Global Offshore Wind Energy Capacity from 2008 to 2018 (in Megawatts)https://www.statista.com/statistics/476327/global-capacity-of-offshore-wind-energy/ | es_ES |
dc.description.references | Haliade-X Offshore Wind Turbine Platformhttps://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine | es_ES |
dc.description.references | Pérez-Collazo, C., Greaves, D., & Iglesias, G. (2015). A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews, 42, 141-153. doi:10.1016/j.rser.2014.09.032 | es_ES |
dc.description.references | Astariz, S., & Iglesias, G. (2015). Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect. Energies, 8(7), 7344-7366. doi:10.3390/en8077344 | es_ES |
dc.description.references | Floating Power Plant A/Shttp://www.floatingpowerplant.com/ | es_ES |
dc.description.references | González, J. S., Gonzalez Rodriguez, A. G., Mora, J. C., Santos, J. R., & Payan, M. B. (2010). Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(8), 1671-1681. doi:10.1016/j.renene.2010.01.010 | es_ES |
dc.description.references | Lerch, M., De-Prada-Gil, M., Molins, C., & Benveniste, G. (2018). Sensitivity analysis on the levelized cost of energy for floating offshore wind farms. Sustainable Energy Technologies and Assessments, 30, 77-90. doi:10.1016/j.seta.2018.09.005 | es_ES |
dc.description.references | Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 | es_ES |
dc.description.references | Ireland Second Highest in Europe for Wind Energyhttps://www.irishexaminer.com/breakingnews/ireland/ireland-second-highest-in-europe-for-wind-energy-910442.html | es_ES |
dc.description.references | Ireland Plans 12GW Renewables Boosthttps://www.windpowermonthly.com/article/1587884/ireland-plans-12gw-renewables-boost | es_ES |
dc.description.references | DS3 Programme Operational Capability Outlook 2016http://www.eirgridgroup.com/site-files/library/EirGrid/DS3-Operational-Capability-Outlook-2016.pdf | es_ES |
dc.description.references | Desmond, C., Murphy, J., Blonk, L., & Haans, W. (2016). Description of an 8 MW reference wind turbine. Journal of Physics: Conference Series, 753, 092013. doi:10.1088/1742-6596/753/9/092013 | es_ES |
dc.description.references | Global Wind Atlas (GWA)https://globalwindatlas.info/ | es_ES |
dc.description.references | Bathymetry Viewing and Downloading Service, EMODnethttp://portal.emodnet-bathymetry.eu/?menu=19 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |