- -

Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Izquierdo-Pérez, Jorge es_ES
dc.contributor.author Brentan, Bruno M. es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Clausen, Niels-Erik es_ES
dc.contributor.author Pegalajar-Jurado, Antonio es_ES
dc.contributor.author Ebsen, Nis es_ES
dc.date.accessioned 2021-03-01T08:10:29Z
dc.date.available 2021-03-01T08:10:29Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162609
dc.description.abstract [EN] Offshore floating hybrid wind and wave energy is a young technology yet to be scaled up. A way to reduce the total costs of the energy production process in order to ensure competitiveness in the sustainable energy market is to maximize the farm's efficiency. To do so, an energy generation and costs calculation model was developed with the objective of minimizing the technology's Levelized Cost of Energy (LCOE) of the P80 hybrid wind-wave concept, designed by the company Floating Power Plant A/S. A Particle Swarm Optimization (PSO) algorithm was then implemented on top of other technical and decision-making processes, taking as decision variables the layout, the offshore substation position, and the export cable choice. The process was applied off the west coast of Ireland in a site of interest for the company, and after a quantitative and qualitative optimization process, a minimized LCOE was obtained. It was then found that lower costs of similar to 73% can be reached in the short-term, and the room for improvement in the structure's design and materials was highlighted, with an LCOE reduction potential of up to 32%. The model serves usefully as a preliminary analysis. However, the uncertainty estimate of 11% indicates that further site-specific studies and measurements are essential. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Processes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sustainable energy generation es_ES
dc.subject Floating offshore energy generation es_ES
dc.subject Hybrid wind-wave platform es_ES
dc.subject LCOE es_ES
dc.subject Farm layout es_ES
dc.subject Optimization es_ES
dc.subject Particle Swarm Optimization es_ES
dc.subject PSO es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/pr8020139 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Izquierdo-Pérez, J.; Brentan, BM.; Izquierdo Sebastián, J.; Clausen, N.; Pegalajar-Jurado, A.; Ebsen, N. (2020). Layout Optimization Process to Minimize the Cost of Energy of an Offshore Floating Hybrid Wind-Wave Farm. Processes. 8(2):1-23. https://doi.org/10.3390/pr8020139 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/pr8020139 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2227-9717 es_ES
dc.relation.pasarela S\401106 es_ES
dc.description.references Wind Power Capacity Worldwide Reaches 597 GW, 50.1 GWhttps://wwindea.org/blog/2019/02/25/wind-power-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018/ es_ES
dc.description.references Global Offshore Wind Energy Capacity from 2008 to 2018 (in Megawatts)https://www.statista.com/statistics/476327/global-capacity-of-offshore-wind-energy/ es_ES
dc.description.references Haliade-X Offshore Wind Turbine Platformhttps://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine es_ES
dc.description.references Pérez-Collazo, C., Greaves, D., & Iglesias, G. (2015). A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews, 42, 141-153. doi:10.1016/j.rser.2014.09.032 es_ES
dc.description.references Astariz, S., & Iglesias, G. (2015). Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect. Energies, 8(7), 7344-7366. doi:10.3390/en8077344 es_ES
dc.description.references Floating Power Plant A/Shttp://www.floatingpowerplant.com/ es_ES
dc.description.references González, J. S., Gonzalez Rodriguez, A. G., Mora, J. C., Santos, J. R., & Payan, M. B. (2010). Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(8), 1671-1681. doi:10.1016/j.renene.2010.01.010 es_ES
dc.description.references Lerch, M., De-Prada-Gil, M., Molins, C., & Benveniste, G. (2018). Sensitivity analysis on the levelized cost of energy for floating offshore wind farms. Sustainable Energy Technologies and Assessments, 30, 77-90. doi:10.1016/j.seta.2018.09.005 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 es_ES
dc.description.references Ireland Second Highest in Europe for Wind Energyhttps://www.irishexaminer.com/breakingnews/ireland/ireland-second-highest-in-europe-for-wind-energy-910442.html es_ES
dc.description.references Ireland Plans 12GW Renewables Boosthttps://www.windpowermonthly.com/article/1587884/ireland-plans-12gw-renewables-boost es_ES
dc.description.references DS3 Programme Operational Capability Outlook 2016http://www.eirgridgroup.com/site-files/library/EirGrid/DS3-Operational-Capability-Outlook-2016.pdf es_ES
dc.description.references Desmond, C., Murphy, J., Blonk, L., & Haans, W. (2016). Description of an 8 MW reference wind turbine. Journal of Physics: Conference Series, 753, 092013. doi:10.1088/1742-6596/753/9/092013 es_ES
dc.description.references Global Wind Atlas (GWA)https://globalwindatlas.info/ es_ES
dc.description.references Bathymetry Viewing and Downloading Service, EMODnethttp://portal.emodnet-bathymetry.eu/?menu=19 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem