- -

Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zamorano-López, N. es_ES
dc.contributor.author Borrás, L. es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.date.accessioned 2021-03-02T04:31:37Z
dc.date.available 2021-03-02T04:31:37Z
dc.date.issued 2020-01-10 es_ES
dc.identifier.issn 0048-9697 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162643
dc.description.abstract [EN] Methane production from microalgae can be enhanced through anaerobic co-digestion with carbon-rich substrates and thus mitigate the inhibition risk associated with its low C:N ratio. Acclimated microbial communities for microalgae disruption can be used as a source of natural enzymes in bioenergy production. However, co-substrates with a certain microbial diversity such as primary sludge might shift the microbial structure. Substrates were generated in a Water Resource Recovery Facility (WRRF) and combined as follows: Scenedesmus or Chlorella digestion and microalgae co-digestion with primary sludge. The study was performed using two lab-scale Anaerobic Membrane Bioreactors (AnMBR). During three years, different feedstocks scenarios for methane production were evaluated with a special focus on the microbial diversity of the AnMBR. 57% of the population was shared between the different feedstock scenarios, revealing the importance of Anaerolineaceae members besides Smithella and Methanosaeta genera. The addition of primary sludge enhanced the microbial diversity of the system during both Chlorella and Scenedesmus co-digestion and promoted different microbial structures. Aceticlastic methanogen Methanosaeta was dominant in all the feedstock scenarios. A more remarkable role of syntrophic fatty acid degraders (Smithella, Syntrophobacteraceae) was observed during co-digestion when only microalgae were digested. However, no significant changes were observed in the microbial composition during anaerobic microalgae digestion when feeding only Chlorella or Scenedesmus. This is the first work revealing the composition of complex communities for semi-continuous bioenergy production from WRRF streams. The stability and maintenance of a microbial core over-time in semi-continuous AnMBRs is here shown supporting their future application in full-scale systems for raw microalgae digestion or codigestion. es_ES
dc.description.sponsorship The Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) are gratefully acknowledged for their support to this research work through CTM2011-28595-C02-02 and CTM2014-54980-C2-1-R projects. The authors are thankful to Ph.D. Silvia Greses and Ph.D. candidate Rebecca Serna-Garcia (Universitat de Valencia, Spain) for allowing the collection of digestate samples from their bioreactors and providing a brief data characterization of their performance. As well, authors thank the support of Maria Paches (IIAMA, Valencia, Spain) during phytoplankton monitoring in the photobioreactor plant. Finally, the sequencing service from FISABIO (Valencia, Spain) is also gratefully acknowledged for their technical support during the design stage of this work. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof The Science of The Total Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject 16S rRNA gene es_ES
dc.subject Anaerobic digestion es_ES
dc.subject AnMBR es_ES
dc.subject Biogas es_ES
dc.subject Co-digestion es_ES
dc.subject Microalgae es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scitotenv.2019.134365 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Zamorano-López, N.; Borrás, L.; Seco, A.; Aguado García, D. (2020). Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. The Science of The Total Environment. 699:1-12. https://doi.org/10.1016/j.scitotenv.2019.134365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scitotenv.2019.134365 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 699 es_ES
dc.identifier.pmid 31677459 es_ES
dc.relation.pasarela S\403688 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references APHA, APHA/AWWA/WEF, 2012. In: Standard Methods for the Examination of Water and Wastewater. Stand. Methods, pp. 541 doi.org/ISBN 9780875532356. es_ES
dc.description.references Astals, S., Musenze, R. S., Bai, X., Tannock, S., Tait, S., Pratt, S., & Jensen, P. D. (2015). Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresource Technology, 181, 97-104. doi:10.1016/j.biortech.2015.01.039 es_ES
dc.description.references Baudelet, P.-H., Ricochon, G., Linder, M., & Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371. doi:10.1016/j.algal.2017.04.008 es_ES
dc.description.references Bovio, P., Cabezas, A., & Etchebehere, C. (2018). Preliminary analysis ofChloroflexipopulations in full-scale UASB methanogenic reactors. Journal of Applied Microbiology, 126(2), 667-683. doi:10.1111/jam.14115 es_ES
dc.description.references Calusinska, M., Goux, X., Fossépré, M., Muller, E. E. L., Wilmes, P., & Delfosse, P. (2018). A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1195-8 es_ES
dc.description.references Carrillo-Reyes, J., Barragán-Trinidad, M., & Buitrón, G. (2016). Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal Research, 18, 341-351. doi:10.1016/j.algal.2016.07.004 es_ES
dc.description.references Chen, C., Ming, J., Yoza, B. A., Liang, J., Li, Q. X., Guo, H., … Wang, Q. (2019). Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresource Technology, 271, 353-359. doi:10.1016/j.biortech.2018.09.132 es_ES
dc.description.references Cheng, W., Chen, H., Yan, S., & Su, J. (2014). Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values. World Journal of Microbiology and Biotechnology, 30(9), 2387-2395. doi:10.1007/s11274-014-1664-6 es_ES
dc.description.references Colzi Lopes, A., Valente, A., Iribarren, D., & González-Fernández, C. (2018). Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: A focus on alternative biogas uses. Bioresource Technology, 270, 138-146. doi:10.1016/j.biortech.2018.09.005 es_ES
dc.description.references Córdova, O., Chamy, R., Guerrero, L., & Sánchez-Rodríguez, A. (2018). Assessing the Effect of Pretreatments on the Structure and Functionality of Microbial Communities for the Bioconversion of Microalgae to Biogas. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01388 es_ES
dc.description.references Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107, 250-263. doi:10.1016/j.rser.2019.03.005 es_ES
dc.description.references Crutchik, D., Frison, N., Eusebi, A. L., & Fatone, F. (2018). Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. Water Research, 136, 112-119. doi:10.1016/j.watres.2018.02.047 es_ES
dc.description.references De Vrieze, J., Christiaens, M. E. R., & Verstraete, W. (2017). The microbiome as engineering tool: Manufacturing and trading between microorganisms. New Biotechnology, 39, 206-214. doi:10.1016/j.nbt.2017.07.001 es_ES
dc.description.references De Vrieze, J., Pinto, A. J., Sloan, W. T., & Ijaz, U. Z. (2018). The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 6(1). doi:10.1186/s40168-018-0449-9 es_ES
dc.description.references Dodsworth, J. A., Blainey, P. C., Murugapiran, S. K., Swingley, W. D., Ross, C. A., Tringe, S. G., … Hedlund, B. P. (2013). Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications, 4(1). doi:10.1038/ncomms2884 es_ES
dc.description.references Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the Known Diversity and Environmental Distribution of an Uncultured Phylogenetic Division of Bacteria. Applied and Environmental Microbiology, 66(4), 1617-1621. doi:10.1128/aem.66.4.1617-1621.2000 es_ES
dc.description.references Farag, I. F., Davis, J. P., Youssef, N. H., & Elshahed, M. S. (2014). Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8). PLoS ONE, 9(3), e92139. doi:10.1371/journal.pone.0092139 es_ES
dc.description.references Fontana, A., Kougias, P. G., Treu, L., Kovalovszki, A., Valle, G., Cappa, F., … Campanaro, S. (2018). Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. Microbiome, 6(1). doi:10.1186/s40168-018-0583-4 es_ES
dc.description.references Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50-60. doi:10.1016/j.algal.2018.08.005 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references Gonzalez-Fernandez, C., Sialve, B., & Molinuevo-Salces, B. (2015). Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs. Bioresource Technology, 198, 896-906. doi:10.1016/j.biortech.2015.09.095 es_ES
dc.description.references Gonzalez-Fernandez, C., Barreiro-Vescovo, S., de Godos, I., Fernandez, M., Zouhayr, A., & Ballesteros, M. (2018). Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1188-7 es_ES
dc.description.references González-González, L. M., Correa, D. F., Ryan, S., Jensen, P. D., Pratt, S., & Schenk, P. M. (2018). Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews, 82, 1137-1148. doi:10.1016/j.rser.2017.09.091 es_ES
dc.description.references Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002 es_ES
dc.description.references Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086 es_ES
dc.description.references Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328-337. doi:10.1016/j.biortech.2016.04.119 es_ES
dc.description.references Ju, F., Lau, F., & Zhang, T. (2017). Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. Environmental Science & Technology, 51(7), 3982-3992. doi:10.1021/acs.est.6b06344 es_ES
dc.description.references Kadnikov, V. V., Mardanov, A. V., Beletsky, A. V., Karnachuk, O. V., & Ravin, N. V. (2019). Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles, 23(2), 189-200. doi:10.1007/s00792-018-01073-5 es_ES
dc.description.references Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7-26. doi:10.1016/j.jbiotec.2016.07.015 es_ES
dc.description.references Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., & Kruse, O. (2017). Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels, 10(1). doi:10.1186/s13068-017-0871-4 es_ES
dc.description.references Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W.-H., … Lee, P.-H. (2018). A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresource Technology, 247, 1095-1106. doi:10.1016/j.biortech.2017.09.103 es_ES
dc.description.references Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. doi:10.1016/j.wasman.2017.06.028 es_ES
dc.description.references Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., … Dong, T. (2017). Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 70, 247-254. doi:10.1016/j.wasman.2017.09.016 es_ES
dc.description.references Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresource Technology, 184, 236-244. doi:10.1016/j.biortech.2014.09.145 es_ES
dc.description.references Mansfeldt, C., Achermann, S., Men, Y., Walser, J.-C., Villez, K., Joss, A., … Fenner, K. (2019). Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. The ISME Journal, 13(6), 1589-1601. doi:10.1038/s41396-019-0371-6 es_ES
dc.description.references McIlroy, S. J., Kirkegaard, R. H., Dueholm, M. S., Fernando, E., Karst, S. M., Albertsen, M., & Nielsen, P. H. (2017). Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01134 es_ES
dc.description.references Nakamura, K., Iizuka, R., Nishi, S., Yoshida, T., Hatada, Y., Takaki, Y., … Funatsu, T. (2016). Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Scientific Reports, 6(1). doi:10.1038/srep22259 es_ES
dc.description.references Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003 es_ES
dc.description.references Peces, M., Astals, S., Jensen, P. D., & Clarke, W. P. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Research, 141, 366-376. doi:10.1016/j.watres.2018.05.028 es_ES
dc.description.references Qiao, J.-T., Qiu, Y.-L., Yuan, X.-Z., Shi, X.-S., Xu, X.-H., & Guo, R.-B. (2013). Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresource Technology, 143, 512-518. doi:10.1016/j.biortech.2013.06.014 es_ES
dc.description.references Rinke, C. (2018). Single-Cell Genomics of Microbial Dark Matter. Microbiome Analysis, 99-111. doi:10.1007/978-1-4939-8728-3_7 es_ES
dc.description.references Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013-1021. doi:10.1016/j.chemosphere.2016.10.109 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416. doi:10.1016/j.biotechadv.2009.03.001 es_ES
dc.description.references Skouteris, G., Hermosilla, D., López, P., Negro, C., & Blanco, Á. (2012). Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, 198-199, 138-148. doi:10.1016/j.cej.2012.05.070 es_ES
dc.description.references Solden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 31, 217-226. doi:10.1016/j.mib.2016.04.020 es_ES
dc.description.references Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096 es_ES
dc.description.references Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011 es_ES
dc.description.references Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., … Spang, R. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4(1). doi:10.1186/s40168-016-0175-0 es_ES
dc.description.references Vanwonterghem, I., Jensen, P. D., Dennis, P. G., Hugenholtz, P., Rabaey, K., & Tyson, G. W. (2014). Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. The ISME Journal, 8(10), 2015-2028. doi:10.1038/ismej.2014.50 es_ES
dc.description.references Wang, Y., Hammes, F., De Roy, K., Verstraete, W., & Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28(8), 416-424. doi:10.1016/j.tibtech.2010.04.006 es_ES
dc.description.references Weinrich, S., Koch, S., Bonk, F., Popp, D., Benndorf, D., Klamt, S., & Centler, F. (2019). Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01095 es_ES
dc.description.references Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., … Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45 es_ES
dc.description.references Xie, B., Gong, W., Tian, Y., Qu, F., Luo, Y., Du, X., … Liang, H. (2018). Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chemical Engineering Journal, 350, 1092-1102. doi:10.1016/j.cej.2018.06.032 es_ES
dc.description.references Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2011). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859-869. doi:10.1007/s00253-011-3624-5 es_ES
dc.description.references Zamorano-López, N., Borrás, L., Giménez, J. B., Seco, A., & Aguado, D. (2019). Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 290, 121787. doi:10.1016/j.biortech.2019.121787 es_ES
dc.description.references Zamorano-López, N., Greses, S., Aguado, D., Seco, A., & Borrás, L. (2019). Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Research, 41, 101533. doi:10.1016/j.algal.2019.101533 es_ES
dc.description.references Zou, Y., Xu, X., Li, L., Yang, F., & Zhang, S. (2018). Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresource Technology, 254, 83-90. doi:10.1016/j.biortech.2017.12.054 es_ES
dc.description.references Lv, Z., Chen, Z., Chen, X., Liang, J., Jiang, J., & Loake, G. J. (2019). Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Management, 84, 211-219. doi:10.1016/j.wasman.2018.11.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem