Mostrar el registro sencillo del ítem
dc.contributor.author | Arenas, Jorge P. | es_ES |
dc.contributor.author | Rey Tormos, Romina María del | es_ES |
dc.contributor.author | Alba, Jesus | es_ES |
dc.contributor.author | Oltra, Roberto | es_ES |
dc.date.accessioned | 2021-03-02T04:31:40Z | |
dc.date.available | 2021-03-02T04:31:40Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162644 | |
dc.description.abstract | [EN] Research on sound-absorbing materials made of natural fibers is an emerging area in sustainable materials. In this communication, the use of raw esparto grass as an environmentally friendly sound-absorbing material is explored. Measurements of the normal-incidence sound-absorption coefficient and airflow resistivity of three different types of esparto from different countries are presented. In addition, the best-fit coefficients for reasonable prediction of the sound-absorption performance by means of simple empirical formulae are reported. These formulae require only knowledge of the airflow resistivity of the fibrous material. The results presented in this paper are an addition to the characterization of available natural fibers to be used as alternatives to synthetic ones in the manufacturing of sound-absorbing materials. | es_ES |
dc.description.sponsorship | This research was funded by CONICYT-FONDECYT, grant number 1171110. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sound absorption | es_ES |
dc.subject | Esparto | es_ES |
dc.subject | Natural fibers | es_ES |
dc.subject | Acoustic materials | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Sound-Absorption Properties of Materials Made of Esparto Grass Fibers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su12145533 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//1171110/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Arenas, JP.; Rey Tormos, RMD.; Alba, J.; Oltra, R. (2020). Sound-Absorption Properties of Materials Made of Esparto Grass Fibers. Sustainability. 12(14):1-10. https://doi.org/10.3390/su12145533 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su12145533 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 14 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\418027 | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.description.references | Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. doi:10.1016/j.progpolymsci.2012.04.003 | es_ES |
dc.description.references | Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. doi:10.1016/j.compositesa.2015.08.038 | es_ES |
dc.description.references | Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A Review of Sustainable Materials for Acoustic Applications. Building Acoustics, 19(4), 283-311. doi:10.1260/1351-010x.19.4.283 | es_ES |
dc.description.references | Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029 | es_ES |
dc.description.references | Koruk, H., & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters, 157, 166-168. doi:10.1016/j.matlet.2015.05.071 | es_ES |
dc.description.references | Ersoy, S., & Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70(1), 215-220. doi:10.1016/j.apacoust.2007.12.005 | es_ES |
dc.description.references | Hosseini Fouladi, M., Nor, M. J. M., Ayub, M., & Leman, Z. A. (2010). Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics, 71(3), 241-249. doi:10.1016/j.apacoust.2009.09.003 | es_ES |
dc.description.references | Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007 | es_ES |
dc.description.references | Ramis, J., Del Rey, R., Alba, J., Godinho, L., & Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción, 64(313), e008. doi:10.3989/mc.2014.00513 | es_ES |
dc.description.references | Oldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. doi:10.1016/j.apacoust.2010.12.009 | es_ES |
dc.description.references | Yang, W., & Li, Y. (2012). Sound absorption performance of natural fibers and their composites. Science China Technological Sciences, 55(8), 2278-2283. doi:10.1007/s11431-012-4943-1 | es_ES |
dc.description.references | Tang, X., Zhang, X., Zhang, H., Zhuang, X., & Yan, X. (2018). Corn husk for noise reduction: Robust acoustic absorption and reduced thickness. Applied Acoustics, 134, 60-68. doi:10.1016/j.apacoust.2018.01.012 | es_ES |
dc.description.references | Berardi, U., Iannace, G., & Di Gabriele, M. (2017). The Acoustic Characterization of Broom Fibers. Journal of Natural Fibers, 14(6), 858-863. doi:10.1080/15440478.2017.1279995 | es_ES |
dc.description.references | Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114. doi:10.1016/j.apacoust.2017.09.012 | es_ES |
dc.description.references | Malawade, U. A., & Jadhav, M. G. (2020). Investigation of the Acoustic Performance of Bagasse. Journal of Materials Research and Technology, 9(1), 882-889. doi:10.1016/j.jmrt.2019.11.028 | es_ES |
dc.description.references | Gomez, T. S., Navacerrada, M. A., Díaz, C., & Fernández-Morales, P. (2020). Fique fibres as a sustainable material for thermoacoustic conditioning. Applied Acoustics, 164, 107240. doi:10.1016/j.apacoust.2020.107240 | es_ES |
dc.description.references | Othmani, C., Taktak, M., Zein, A., Hentati, T., Elnady, T., Fakhfakh, T., & Haddar, M. (2016). Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics, 109, 90-96. doi:10.1016/j.apacoust.2016.02.005 | es_ES |
dc.description.references | Or, K. H., Putra, A., & Selamat, M. Z. (2017). Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Applied Acoustics, 119, 9-16. doi:10.1016/j.apacoust.2016.12.002 | es_ES |
dc.description.references | Taban, E., Khavanin, A., Faridan, M., Samaei, S. E., Samimi, K., & Rashidi, R. (2019). Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. International Journal of Environmental Science and Technology, 17(1), 39-48. doi:10.1007/s13762-019-02304-8 | es_ES |
dc.description.references | Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9-15. doi:10.1016/j.apacoust.2018.01.029 | es_ES |
dc.description.references | Yun, B. Y., Cho, H. M., Kim, Y. U., Lee, S. C., Berardi, U., & Kim, S. (2020). Circular reutilization of coffee waste for sound absorbing panels: A perspective on material recycling. Environmental Research, 184, 109281. doi:10.1016/j.envres.2020.109281 | es_ES |
dc.description.references | Zhang, J., Shen, Y., Jiang, B., & Li, Y. (2018). Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 5(3), 75. doi:10.3390/aerospace5030075 | es_ES |
dc.description.references | Kusno, A., Sakagami, K., Okuzono, T., Toyoda, M., Otsuru, T., Mulyadi, R., & Kamil, K. (2019). A Pilot Study on the Sound Absorption Characteristics of Chicken Feathers as an Alternative Sustainable Acoustical Material. Sustainability, 11(5), 1476. doi:10.3390/su11051476 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |
dc.description.references | Berardi, U., & Iannace, G. (2017). Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics, 115, 131-138. doi:10.1016/j.apacoust.2016.08.012 | es_ES |
dc.description.references | Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19 | es_ES |
dc.description.references | Attenborough, K. (1982). Acoustical characteristics of porous materials. Physics Reports, 82(3), 179-227. doi:10.1016/0370-1573(82)90131-4 | es_ES |
dc.description.references | Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7 | es_ES |
dc.description.references | Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008 | es_ES |
dc.description.references | Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009 | es_ES |
dc.description.references | Arenas, J. P., Rebolledo, J., Del Rey, R., & Alba, J. (2014). Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material. BioResources, 9(4). doi:10.15376/biores.9.4.6227-6240 | es_ES |
dc.description.references | Silva, C. C. B. da, Terashima, F. J. H., Barbieri, N., & Lima, K. F. de. (2019). Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Applied Acoustics, 156, 92-100. doi:10.1016/j.apacoust.2019.07.001 | es_ES |
dc.description.references | Sair, S., Mansouri, S., Tanane, O., Abboud, Y., & El Bouari, A. (2019). Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications. SN Applied Sciences, 1(7). doi:10.1007/s42452-019-0685-z | es_ES |
dc.description.references | Maghchiche, A., Haouam, A., & Immirzi, B. (2013). Extraction and Characterization of Algerian Alfa Grass Short Fibers (Stipa Tenacissima). Chemistry & Chemical Technology, 7(3), 339-344. doi:10.23939/chcht07.03.339 | es_ES |
dc.description.references | Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B., & Stevanovic, T. (2009). Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresource Technology, 100(14), 3585-3592. doi:10.1016/j.biortech.2009.01.074 | es_ES |
dc.description.references | Belkhir, S., Koubaa, A., Khadhri, A., Ksontini, M., & Smiti, S. (2012). Variations in the morphological characteristics of Stipa tenacissima fiber: The case of Tunisia. Industrial Crops and Products, 37(1), 200-206. doi:10.1016/j.indcrop.2011.11.021 | es_ES |
dc.description.references | Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9 | es_ES |
dc.description.references | Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064 | es_ES |
dc.description.references | Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 | es_ES |
dc.description.references | Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s1052623496303470 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |