Mostrar el registro sencillo del ítem
dc.contributor.author | Pineda-Jaramillo, J. | es_ES |
dc.contributor.author | Salvador Zuriaga, Pablo | es_ES |
dc.contributor.author | Martínez Fernández, Pablo | es_ES |
dc.contributor.author | Insa Franco, Ricardo | es_ES |
dc.date.accessioned | 2021-03-03T04:31:56Z | |
dc.date.available | 2021-03-03T04:31:56Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 2199-6687 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162863 | |
dc.description.abstract | [EN] Minimizing energy consumption is a key issue from both an environmental and economic perspectives for railways systems; however, it is also important to reduce infrastructure construction costs. In the present work, an artificial neural network (ANN) was trained to estimate the energy consumption of a metropolitan railway line. This ANN was used to test hypothetical vertical alignments scenarios, proving that symmetric vertical sinusoid alignments (SVSA) can reduce energy consumption by up to 18.4% compared with a flat alignment. Finally, we analyzed the impact of SVSA application on infrastructure construction costs, considering different scenarios based on top-down excavation methods. When balancing reduction in energy consumption against infrastructure construction costs between SVSA and flat alignment, the extra construction costs due to SVSA have a return period of 25-300 years compared with a flat alignment, depending on the soil type and construction method used. Symmetric vertical sinusoid alignment layouts are thus suitable for scattered or soft soils, up to compacted intermediate geomaterials. | es_ES |
dc.description.sponsorship | This paper was realized thanks to the collaboration agreement signed between Ferrocarrils de la Generalitat Valenciana and Universitat Politecnica de Valencia, and funding obtained by the Spanish Ministry of Economy and Competitiveness through the project ''Strategies for the design and energy-efficient operation of railway and tramway infrastructure'' (Ref. TRA2011-26602). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Urban Rail Transit | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Infrastructure construction costs on railways | es_ES |
dc.subject | Symmetric vertical sinusoid alignments | es_ES |
dc.subject | Optimization of energy consumption | es_ES |
dc.subject | Artificial neural networks (ANN) | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40864-020-00130-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TRA2011-26602/ES/ESTRATEGIAS PARA EL DISEÑO Y LA EXPLOTACION ENERGETICAMENTE EFICIENTE DE INFRAESTRUCTURAS FERROVIARAS Y TRANVIARIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori | es_ES |
dc.description.bibliographicCitation | Pineda-Jaramillo, J.; Salvador Zuriaga, P.; Martínez Fernández, P.; Insa Franco, R. (2020). Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks. Urban Rail Transit. 6(3):145-156. https://doi.org/10.1007/s40864-020-00130-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40864-020-00130-7 | es_ES |
dc.description.upvformatpinicio | 145 | es_ES |
dc.description.upvformatpfin | 156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\419244 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | International Energy Agency (2018) Key world energy statistics. Paris | es_ES |
dc.description.references | García Álvarez A (2010) High speed, energy consumption and emissions. Study and Research Group for Railway Energy and Emissions, Madrid | es_ES |
dc.description.references | Kim K, Chien S (2010) Optimal train operation for minimum energy consumption considering schedule adherence. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | Kosinski A, Schipper L, Deakin E (2011) Analysis of high-speed rail’s potential to reduce CO2 emissions from transportation in the United States. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | European Comission (2017) EU transport in figures-statistical Pocketbook 2017 | es_ES |
dc.description.references | Douglas H, Roberts C, Hillmansen S, Schmid F (2015) An assessment of available measures to reduce traction energy use in railway networks. Energy Convers Manag 106:1149–1165 | es_ES |
dc.description.references | Dundar S, Sahin I (2011) A genetic algorithm solution for train scheduling. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | Liu M, Haghani A, Toobaie S (2010) A genetic Algorithm-based column generation approach to passenger rail crew scheduling. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | Salvador P, García C, Pineda-Jaramillo JD, Insa R (2016) The use of driving simulators for enhancing train driver’s performance in terms of energy consumption. In: 12th conference on transportation engineering (CIT 2016), 7–9 June 2016, Valencia, Spain | es_ES |
dc.description.references | Sicre C, Cucala P, Fernández-Cardador A, Lukaszewicz P (2012) Modeling and optimizing energy-efficient manual driving on high speed lines. IEEJ Trans Electr Electron Eng 7:633–640 | es_ES |
dc.description.references | Brenna M, Foiadelli F, Longo M (2016) Application of genetic algorithms for driverless subway train energy optimization. Int J Veh Technol 2016:8073523. https://doi.org/10.1155/2016/8073523 | es_ES |
dc.description.references | Fernández A, Fernández-Cardador A, Cucala P, Domínguez M, Gonsalves T (2015) Design of robust and energy-efficient ATO speed profiles of metropolitan lines considering train load variations and delays. IEEE Trans Intell Transp Syst 16:2061–2071 | es_ES |
dc.description.references | Lukaszewicz P (2000) Driving techniques and strategies for freight trains. In: Allan J, Brebbia CA, Hill RJ, Sciutto G, Sone S (eds) Computers in railways VII. WIT Press, Southampton, pp 1065–1073 | es_ES |
dc.description.references | Bai Y, Mao B, Zhou F, Ding Y, Dong C (2009) Energy-efficient driving strategy for freight trains based on power consumption analysis. J Transp Syst Eng Inf Technol 9(3):43–50 | es_ES |
dc.description.references | Lukaszewicz P (2001) Energy consumption and running time for trains. Modelling of running resistance and driver behaviour based on full scale testing. Dissertation, KTH Royal Institute of Technology | es_ES |
dc.description.references | Sicre C, Cucala P, Fernández A, Jiménez J, Ribera I, Serrano A (2010) A method to optimise train energy consumption combining manual energy efficient driving and scheduling. WIT Trans Built Environ 114:549–560 | es_ES |
dc.description.references | Bocharnikov YV, Tobias AM, Roberts C, Hillmansen S, Goodman CJ (2007) Optimal driving strategy for traction energy on DC suburban railways. IET Electr Power Appl 1(5):675–682 | es_ES |
dc.description.references | Tian Z, Hillmansen S, Roberts C, Weston P, Zhao N, Chen L, Chen M (2015) Energy evaluation of the power network of a DC railway system with regenerating trains. IET Electr Syst Transp 6:1–9 | es_ES |
dc.description.references | Domínguez M, Fernández A, Cucala P, Blanquer J (2010) Efficient design of automatic train operation speed profiles with on board energy storage devices. WIT Trans Built Environ 114:509–520 | es_ES |
dc.description.references | Kim K, Chien SI (2010) Simulation-based analysis of train controls under various track alignments. J Transp Eng 136(11):937–948 | es_ES |
dc.description.references | Pineda-Jaramillo JD, Salvador-Zuriaga P, Insa-Franco R (2017) Comparing energy consumption for rail transit routes through symmetric vertical sinusoid alignments (SVSA), and applying artificial neural networks. A case study of MetroValencia (Spain). DYNA 84(203):17–23 | es_ES |
dc.description.references | Huang S, Sung H, Ma C (2015) Optimize energy of train simulation with track slope data. In: IEEE conference on intelligent transportation systems, 15–18 Sept 2015, Las Palmas, Spain | es_ES |
dc.description.references | Lai X, Schonfeld P (2010) Optimizing rail transit alignment connecting several major stations. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | Samanta S, Jha MK (2011) Modeling a rail transit alignment considering different objectives. Transp Res A 45(1):31–45 | es_ES |
dc.description.references | Kelly J, Knottenbelt W (2015) Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments, Seoul, South Korea | es_ES |
dc.description.references | Datta D, Tassou SA, Marriott D (1997) Application of neural networks for the prediction of the energy consumption in a supermarket. In Proceedings of the international conference CLIMA 2000. Brussels, Belgium. | es_ES |
dc.description.references | Khosravani HR, Castilla MD, Berenguel M, Ruano AE, Ferreira PM (2016) A comparison of energy consumption prediction models based on neural networks of a bioclimatic building. Energies 9(1):57. https://doi.org/10.3390/en9010057 | es_ES |
dc.description.references | Moon JW, Jung SK, Lee YO, Choi S (2015) Prediction performance of an artificial neural network model for the amount of cooling energy consumption in hotel rooms. Energies 8:8226–8243 | es_ES |
dc.description.references | Abolfazli H, Asadzadeh SM, Nazari-Shirkouhi S, Asadzadeh SM, Rezaie K (2014) Forecasting rail transport petroleum consumption using an integrated model of autocorrelation functions—artificial neural network. Acta Polytech Hung 11(2):203–214 | es_ES |
dc.description.references | Feng J, Li XM, Xie MQ, Gao LP (2016) A neural network model for calculating metro traction energy consumption. In: international conference on power, energy engineering and management (PEEM 2016), Bangkok, Thailand | es_ES |
dc.description.references | Gattuso D, Restuccia A (2014) A tool for railway transport cost evaluation. Procedia Soc Behav Sci 111:549–558 | es_ES |
dc.description.references | Flyvbjerg B, Bruzelius N, Van-Wee B (2008) Comparison of capital costs per route-kilometre in urban rail. J Transp Infrasruct Res 8(1):17–30 | es_ES |
dc.description.references | Von-Brown JT (2011) A planning methodology for railway construction cost estimation in North America. Dissertation, Iowa State University | es_ES |
dc.description.references | García-Álvarez A (2010) Relationship between rail service operating direct costs and speed. Fundación de los Ferrocarriles Españoles, Madrid | es_ES |
dc.description.references | Olsson NOE, Økland A, Halvorsen SB (2012) Consequences of differences in cost-benefit methodology in railway infrastructure appraisal—a comparison between selected countries. Transp Policy 22:29–35 | es_ES |
dc.description.references | Treasury HM (2010) Infrastructure cost review. Infrastructure UK, London | es_ES |
dc.description.references | Bernardos A, Paraskevopoulou C, Diederichs M (2013) Assessing and benchmarking the construction cost of tunnels. In: GéoMontréal, Montreal, Canada | es_ES |
dc.description.references | Ming-Guang L, Jin-Jian C, An-Jun X, Xiao-He X, Jian-Hua X (2014) Case study of innovative top-down construction method with channel-type excavation. J Construct Eng Manag 140(5):05014003. https://doi.org/10.1061/%28ASCE%29CO.1943-7862.0000828 | es_ES |
dc.description.references | Fox Halcrow (2000) World bank urban transport strategy review: mass rapid transit in developing countries, Final report. World Bank, Washington | es_ES |
dc.description.references | BB&J Consult (2000) The world bank group urban transport strategy review: Implementation of rapid transit. Final report. World Bank, Washington | es_ES |
dc.description.references | Pineda-Jaramillo JD, Insa R, Martínez P (2018) Modelling the energy consumption of trains applying neural networks. Proc Inst Mech Eng F J Rail Rapid Transit 232(3):816–823 | es_ES |
dc.description.references | Pineda-Jaramillo JD (2017) Modelo de optimización del consumo energético en trenes mediante el diseño geométrico vertical sinusoidal y su impacto en el coste de la construcción de la infraestructura Dissertation, Polytechnical University of Valencia | es_ES |
dc.description.references | Karlik B (2014) Machine learning algorithms for characterization of EMG signals. Int J Inf Electron Eng 4(3):189–194 | es_ES |
dc.description.references | Bishop C (1995) Neural networks for pattern recognition. Clarendon Press, Oxford | es_ES |
dc.description.references | McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133 | es_ES |
dc.description.references | Karlaftis M, Vlahogianni E (2011) Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp Res C Emerg Technol 19(3):387–399 | es_ES |
dc.description.references | Cantarella G, De Luca S (2003) Modeling transportation mode choice through artificial neural networks. In: 4th international symposium on uncertainty modeling and analysis. 21–24 Sept 2003, College Park, MD, USA | es_ES |
dc.description.references | Celikoglu H (2006) Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling. Math Comput Model 44(7):640–658 | es_ES |
dc.description.references | Zhao D, Shao C, Li J, Dong C, Liu Y (2010) Travel mode choice modeling based on improved probabilistic neural network. In: Traffic and transportation studies, 3–5 Aug 2010, Kunming, China | es_ES |
dc.description.references | Omrani H, Charif O, Gerber P, Awasthi A, Trigano P (2013) Prediction of individual travel mode with evidential neural network model. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA | es_ES |
dc.description.references | Jha MK, Schonfeld P, Samanta S (2007) Optimizing rail transit routes with genetic algorithms and geographic information systems. J Urban Plann Dev 133(3):161–171 | es_ES |
dc.description.references | Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117 | es_ES |
dc.description.references | Yeh S (2003) Integrated analysis of vertical alignment and speed profiles for rail transit routes. Dissertation, University of Maryland | es_ES |
dc.description.references | Molines J (2011) Stability of crown walls of cube and cubipod armoured mound breakwaters. PIANC E-Mag 144:29–44 | es_ES |
dc.description.references | CYPE Ingenieros SA (2019) Prices database. www.generadordeprecios.info . Accessed 3 March 2019 | es_ES |
dc.description.references | Ministerio de Fomento. Gobierno de España (2011) Cuadro de precios de referencia de la dirección general de carreteras. Madrid | es_ES |
dc.description.references | Hydraulics of Wells Task Committee (2014) In: Ahmed N, Taylor S, Sheng Z (eds) Hydraulics of wells: design, construction, testing and maintenance of water well systems. American Society of Civil Engineers, Reston | es_ES |