- -

Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pineda-Jaramillo, J. es_ES
dc.contributor.author Salvador Zuriaga, Pablo es_ES
dc.contributor.author Martínez Fernández, Pablo es_ES
dc.contributor.author Insa Franco, Ricardo es_ES
dc.date.accessioned 2021-03-03T04:31:56Z
dc.date.available 2021-03-03T04:31:56Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 2199-6687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162863
dc.description.abstract [EN] Minimizing energy consumption is a key issue from both an environmental and economic perspectives for railways systems; however, it is also important to reduce infrastructure construction costs. In the present work, an artificial neural network (ANN) was trained to estimate the energy consumption of a metropolitan railway line. This ANN was used to test hypothetical vertical alignments scenarios, proving that symmetric vertical sinusoid alignments (SVSA) can reduce energy consumption by up to 18.4% compared with a flat alignment. Finally, we analyzed the impact of SVSA application on infrastructure construction costs, considering different scenarios based on top-down excavation methods. When balancing reduction in energy consumption against infrastructure construction costs between SVSA and flat alignment, the extra construction costs due to SVSA have a return period of 25-300 years compared with a flat alignment, depending on the soil type and construction method used. Symmetric vertical sinusoid alignment layouts are thus suitable for scattered or soft soils, up to compacted intermediate geomaterials. es_ES
dc.description.sponsorship This paper was realized thanks to the collaboration agreement signed between Ferrocarrils de la Generalitat Valenciana and Universitat Politecnica de Valencia, and funding obtained by the Spanish Ministry of Economy and Competitiveness through the project ''Strategies for the design and energy-efficient operation of railway and tramway infrastructure'' (Ref. TRA2011-26602). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Urban Rail Transit es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Infrastructure construction costs on railways es_ES
dc.subject Symmetric vertical sinusoid alignments es_ES
dc.subject Optimization of energy consumption es_ES
dc.subject Artificial neural networks (ANN) es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40864-020-00130-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TRA2011-26602/ES/ESTRATEGIAS PARA EL DISEÑO Y LA EXPLOTACION ENERGETICAMENTE EFICIENTE DE INFRAESTRUCTURAS FERROVIARAS Y TRANVIARIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Pineda-Jaramillo, J.; Salvador Zuriaga, P.; Martínez Fernández, P.; Insa Franco, R. (2020). Impact of Symmetric Vertical Sinusoid Alignments on Infrastructure Construction Costs: Optimizing Energy Consumption in Metropolitan Railway Lines Using Artificial Neural Networks. Urban Rail Transit. 6(3):145-156. https://doi.org/10.1007/s40864-020-00130-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40864-020-00130-7 es_ES
dc.description.upvformatpinicio 145 es_ES
dc.description.upvformatpfin 156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\419244 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references International Energy Agency (2018) Key world energy statistics. Paris es_ES
dc.description.references García Álvarez A (2010) High speed, energy consumption and emissions. Study and Research Group for Railway Energy and Emissions, Madrid es_ES
dc.description.references Kim K, Chien S (2010) Optimal train operation for minimum energy consumption considering schedule adherence. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references Kosinski A, Schipper L, Deakin E (2011) Analysis of high-speed rail’s potential to reduce CO2 emissions from transportation in the United States. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references European Comission (2017) EU transport in figures-statistical Pocketbook 2017 es_ES
dc.description.references Douglas H, Roberts C, Hillmansen S, Schmid F (2015) An assessment of available measures to reduce traction energy use in railway networks. Energy Convers Manag 106:1149–1165 es_ES
dc.description.references Dundar S, Sahin I (2011) A genetic algorithm solution for train scheduling. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references Liu M, Haghani A, Toobaie S (2010) A genetic Algorithm-based column generation approach to passenger rail crew scheduling. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references Salvador P, García C, Pineda-Jaramillo JD, Insa R (2016) The use of driving simulators for enhancing train driver’s performance in terms of energy consumption. In: 12th conference on transportation engineering (CIT 2016), 7–9 June 2016, Valencia, Spain es_ES
dc.description.references Sicre C, Cucala P, Fernández-Cardador A, Lukaszewicz P (2012) Modeling and optimizing energy-efficient manual driving on high speed lines. IEEJ Trans Electr Electron Eng 7:633–640 es_ES
dc.description.references Brenna M, Foiadelli F, Longo M (2016) Application of genetic algorithms for driverless subway train energy optimization. Int J Veh Technol 2016:8073523. https://doi.org/10.1155/2016/8073523 es_ES
dc.description.references Fernández A, Fernández-Cardador A, Cucala P, Domínguez M, Gonsalves T (2015) Design of robust and energy-efficient ATO speed profiles of metropolitan lines considering train load variations and delays. IEEE Trans Intell Transp Syst 16:2061–2071 es_ES
dc.description.references Lukaszewicz P (2000) Driving techniques and strategies for freight trains. In: Allan J, Brebbia CA, Hill RJ, Sciutto G, Sone S (eds) Computers in railways VII. WIT Press, Southampton, pp 1065–1073 es_ES
dc.description.references Bai Y, Mao B, Zhou F, Ding Y, Dong C (2009) Energy-efficient driving strategy for freight trains based on power consumption analysis. J Transp Syst Eng Inf Technol 9(3):43–50 es_ES
dc.description.references Lukaszewicz P (2001) Energy consumption and running time for trains. Modelling of running resistance and driver behaviour based on full scale testing. Dissertation, KTH Royal Institute of Technology es_ES
dc.description.references Sicre C, Cucala P, Fernández A, Jiménez J, Ribera I, Serrano A (2010) A method to optimise train energy consumption combining manual energy efficient driving and scheduling. WIT Trans Built Environ 114:549–560 es_ES
dc.description.references Bocharnikov YV, Tobias AM, Roberts C, Hillmansen S, Goodman CJ (2007) Optimal driving strategy for traction energy on DC suburban railways. IET Electr Power Appl 1(5):675–682 es_ES
dc.description.references Tian Z, Hillmansen S, Roberts C, Weston P, Zhao N, Chen L, Chen M (2015) Energy evaluation of the power network of a DC railway system with regenerating trains. IET Electr Syst Transp 6:1–9 es_ES
dc.description.references Domínguez M, Fernández A, Cucala P, Blanquer J (2010) Efficient design of automatic train operation speed profiles with on board energy storage devices. WIT Trans Built Environ 114:509–520 es_ES
dc.description.references Kim K, Chien SI (2010) Simulation-based analysis of train controls under various track alignments. J Transp Eng 136(11):937–948 es_ES
dc.description.references Pineda-Jaramillo JD, Salvador-Zuriaga P, Insa-Franco R (2017) Comparing energy consumption for rail transit routes through symmetric vertical sinusoid alignments (SVSA), and applying artificial neural networks. A case study of MetroValencia (Spain). DYNA 84(203):17–23 es_ES
dc.description.references Huang S, Sung H, Ma C (2015) Optimize energy of train simulation with track slope data. In: IEEE conference on intelligent transportation systems, 15–18 Sept 2015, Las Palmas, Spain es_ES
dc.description.references Lai X, Schonfeld P (2010) Optimizing rail transit alignment connecting several major stations. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references Samanta S, Jha MK (2011) Modeling a rail transit alignment considering different objectives. Transp Res A 45(1):31–45 es_ES
dc.description.references Kelly J, Knottenbelt W (2015) Neural NILM: deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments, Seoul, South Korea es_ES
dc.description.references Datta D, Tassou SA, Marriott D (1997) Application of neural networks for the prediction of the energy consumption in a supermarket. In Proceedings of the international conference CLIMA 2000. Brussels, Belgium. es_ES
dc.description.references Khosravani HR, Castilla MD, Berenguel M, Ruano AE, Ferreira PM (2016) A comparison of energy consumption prediction models based on neural networks of a bioclimatic building. Energies 9(1):57. https://doi.org/10.3390/en9010057 es_ES
dc.description.references Moon JW, Jung SK, Lee YO, Choi S (2015) Prediction performance of an artificial neural network model for the amount of cooling energy consumption in hotel rooms. Energies 8:8226–8243 es_ES
dc.description.references Abolfazli H, Asadzadeh SM, Nazari-Shirkouhi S, Asadzadeh SM, Rezaie K (2014) Forecasting rail transport petroleum consumption using an integrated model of autocorrelation functions—artificial neural network. Acta Polytech Hung 11(2):203–214 es_ES
dc.description.references Feng J, Li XM, Xie MQ, Gao LP (2016) A neural network model for calculating metro traction energy consumption. In: international conference on power, energy engineering and management (PEEM 2016), Bangkok, Thailand es_ES
dc.description.references Gattuso D, Restuccia A (2014) A tool for railway transport cost evaluation. Procedia Soc Behav Sci 111:549–558 es_ES
dc.description.references Flyvbjerg B, Bruzelius N, Van-Wee B (2008) Comparison of capital costs per route-kilometre in urban rail. J Transp Infrasruct Res 8(1):17–30 es_ES
dc.description.references Von-Brown JT (2011) A planning methodology for railway construction cost estimation in North America. Dissertation, Iowa State University es_ES
dc.description.references García-Álvarez A (2010) Relationship between rail service operating direct costs and speed. Fundación de los Ferrocarriles Españoles, Madrid es_ES
dc.description.references Olsson NOE, Økland A, Halvorsen SB (2012) Consequences of differences in cost-benefit methodology in railway infrastructure appraisal—a comparison between selected countries. Transp Policy 22:29–35 es_ES
dc.description.references Treasury HM (2010) Infrastructure cost review. Infrastructure UK, London es_ES
dc.description.references Bernardos A, Paraskevopoulou C, Diederichs M (2013) Assessing and benchmarking the construction cost of tunnels. In: GéoMontréal, Montreal, Canada es_ES
dc.description.references Ming-Guang L, Jin-Jian C, An-Jun X, Xiao-He X, Jian-Hua X (2014) Case study of innovative top-down construction method with channel-type excavation. J Construct Eng Manag 140(5):05014003. https://doi.org/10.1061/%28ASCE%29CO.1943-7862.0000828 es_ES
dc.description.references Fox Halcrow (2000) World bank urban transport strategy review: mass rapid transit in developing countries, Final report. World Bank, Washington es_ES
dc.description.references BB&J Consult (2000) The world bank group urban transport strategy review: Implementation of rapid transit. Final report. World Bank, Washington es_ES
dc.description.references Pineda-Jaramillo JD, Insa R, Martínez P (2018) Modelling the energy consumption of trains applying neural networks. Proc Inst Mech Eng F J Rail Rapid Transit 232(3):816–823 es_ES
dc.description.references Pineda-Jaramillo JD (2017) Modelo de optimización del consumo energético en trenes mediante el diseño geométrico vertical sinusoidal y su impacto en el coste de la construcción de la infraestructura Dissertation, Polytechnical University of Valencia es_ES
dc.description.references Karlik B (2014) Machine learning algorithms for characterization of EMG signals. Int J Inf Electron Eng 4(3):189–194 es_ES
dc.description.references Bishop C (1995) Neural networks for pattern recognition. Clarendon Press, Oxford es_ES
dc.description.references McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133 es_ES
dc.description.references Karlaftis M, Vlahogianni E (2011) Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp Res C Emerg Technol 19(3):387–399 es_ES
dc.description.references Cantarella G, De Luca S (2003) Modeling transportation mode choice through artificial neural networks. In: 4th international symposium on uncertainty modeling and analysis. 21–24 Sept 2003, College Park, MD, USA es_ES
dc.description.references Celikoglu H (2006) Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling. Math Comput Model 44(7):640–658 es_ES
dc.description.references Zhao D, Shao C, Li J, Dong C, Liu Y (2010) Travel mode choice modeling based on improved probabilistic neural network. In: Traffic and transportation studies, 3–5 Aug 2010, Kunming, China es_ES
dc.description.references Omrani H, Charif O, Gerber P, Awasthi A, Trigano P (2013) Prediction of individual travel mode with evidential neural network model. In: TRB annual meeting compendium. Transportation Research Board, Washington, USA es_ES
dc.description.references Jha MK, Schonfeld P, Samanta S (2007) Optimizing rail transit routes with genetic algorithms and geographic information systems. J Urban Plann Dev 133(3):161–171 es_ES
dc.description.references Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117 es_ES
dc.description.references Yeh S (2003) Integrated analysis of vertical alignment and speed profiles for rail transit routes. Dissertation, University of Maryland es_ES
dc.description.references Molines J (2011) Stability of crown walls of cube and cubipod armoured mound breakwaters. PIANC E-Mag 144:29–44 es_ES
dc.description.references CYPE Ingenieros SA (2019) Prices database. www.generadordeprecios.info . Accessed 3 March 2019 es_ES
dc.description.references Ministerio de Fomento. Gobierno de España (2011) Cuadro de precios de referencia de la dirección general de carreteras. Madrid es_ES
dc.description.references Hydraulics of Wells Task Committee (2014) In: Ahmed N, Taylor S, Sheng Z (eds) Hydraulics of wells: design, construction, testing and maintenance of water well systems. American Society of Civil Engineers, Reston es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem