dc.contributor.author |
Barro-Trastoy, Daniela
|
es_ES |
dc.contributor.author |
Carrera, Esther
|
es_ES |
dc.contributor.author |
Baños, Jorge
|
es_ES |
dc.contributor.author |
Palau-Rodríguez, Julia
|
es_ES |
dc.contributor.author |
Ruiz-Rivero, Omar
|
es_ES |
dc.contributor.author |
Tornero Feliciano, Pablo
|
es_ES |
dc.contributor.author |
Alonso, Jose M.
|
es_ES |
dc.contributor.author |
LOPEZ DIAZ, ISABEL
|
es_ES |
dc.contributor.author |
Gómez Jiménez, Maria Dolores
|
es_ES |
dc.contributor.author |
PEREZ AMADOR, MIGUEL ANGEL
|
es_ES |
dc.date.accessioned |
2021-03-03T04:32:01Z |
|
dc.date.available |
2021-03-03T04:32:01Z |
|
dc.date.issued |
2020-06 |
es_ES |
dc.identifier.issn |
1365-313X |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/162865 |
|
dc.description |
This is the peer reviewed version of the following article: Barro¿Trastoy, D., Carrera, E., Baños, J., Palau-Rodríguez, J., Ruiz-Rivero, O., Tornero, P., Alonso, J.M., López-Díaz, I., Gómez, M.D. and Pérez-Amador, M.A. (2020), Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant J, 102: 1026-1041, which has been published in final form at https://doi.org/10.1111/tpj.14684. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. |
es_ES |
dc.description.abstract |
[EN] Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity. |
es_ES |
dc.description.sponsorship |
We wish to thank B. Janssen (Horticulture and Food Research Institute, New Zealand) for the pBJ60 shuttle vector, C. Ferrandiz and M. Colombo (IBMCP, CSIC-UPV, Valencia, Spain) for their help in the generation of 35S:ANT lines and L.E.P. Peres (Universidade de Sao Paulo, Brazil) for the tomato mutant lines. Our thanks also go to C. Fuster for technical assistance. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BIO2017-83138R) to MAPA and from NSF (DBI-0820755, MCB-1158181, and IOS-1444561) to JMA. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Wiley |
es_ES |
dc.relation.ispartof |
The Plant Journal |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Arabidopsis thaliana |
es_ES |
dc.subject |
Tomato |
es_ES |
dc.subject |
Solanum lycopersicum |
es_ES |
dc.subject |
Gibberellins |
es_ES |
dc.subject |
Brassinosteroids |
es_ES |
dc.subject |
Ovule |
es_ES |
dc.subject |
Reproductive development |
es_ES |
dc.subject |
Hormone interaction |
es_ES |
dc.subject.classification |
BIOQUIMICA Y BIOLOGIA MOLECULAR |
es_ES |
dc.title |
Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1111/tpj.14684 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSF//1158181/US/Metabolic networks of auxin biosynthesis/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSF//0820755/US/Arabidopsis 2010: The Arabidopsis Localizome/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSF//1444561/US/Identification of Translational Hormone-Response Gene Networks and cis-Regulatory Elements/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83138-R/ES/LAS GIBERELINAS EN EL CONTROL DE LA FORMACION DE OVULOS Y SEMILLAS: DISEÑO DE HERRAMIENTAS PARA LA MEJORA VEGETAL/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes |
es_ES |
dc.description.bibliographicCitation |
Barro-Trastoy, D.; Carrera, E.; Baños, J.; Palau-Rodríguez, J.; Ruiz-Rivero, O.; Tornero Feliciano, P.; Alonso, JM.... (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal. 102(5):1026-1041. https://doi.org/10.1111/tpj.14684 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1111/tpj.14684 |
es_ES |
dc.description.upvformatpinicio |
1026 |
es_ES |
dc.description.upvformatpfin |
1041 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
102 |
es_ES |
dc.description.issue |
5 |
es_ES |
dc.identifier.pmid |
31930587 |
es_ES |
dc.relation.pasarela |
S\402957 |
es_ES |
dc.contributor.funder |
National Science Foundation, EEUU |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751 |
es_ES |
dc.description.references |
Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546 |
es_ES |
dc.description.references |
Baker, S. C., Robinson-Beers, K., Villanueva, J. M., Gaiser, J. C., & Gasser, C. S. (1997). Interactions Among Genes Regulating Ovule Development in Arabidopsis thaliana. Genetics, 145(4), 1109-1124. doi:10.1093/genetics/145.4.1109 |
es_ES |
dc.description.references |
Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana
. The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079 |
es_ES |
dc.description.references |
Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytologist, 206(2), 522-540. doi:10.1111/nph.13269 |
es_ES |
dc.description.references |
Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 |
es_ES |
dc.description.references |
Brumos, J., Zhao, C., Gong, Y., Soriano, D., Patel, A. P., Perez-Amador, M. A., … Alonso, J. M. (2019). An Improved Recombineering Toolset for Plants. The Plant Cell, 32(1), 100-122. doi:10.1105/tpc.19.00431 |
es_ES |
dc.description.references |
Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development
. Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552 |
es_ES |
dc.description.references |
Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1). doi:10.1186/1746-4811-7-18 |
es_ES |
dc.description.references |
Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. The Plant Cell, 3(5), 445. doi:10.2307/3869351 |
es_ES |
dc.description.references |
Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x |
es_ES |
dc.description.references |
Clouse, S. D. (2011). Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. The Plant Cell, 23(4), 1219-1230. doi:10.1105/tpc.111.084475 |
es_ES |
dc.description.references |
Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117 |
es_ES |
dc.description.references |
Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545 |
es_ES |
dc.description.references |
Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 |
es_ES |
dc.description.references |
De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I.-R., … Höfte, M. (2012). Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice
. Plant Physiology, 158(4), 1833-1846. doi:10.1104/pp.112.193672 |
es_ES |
dc.description.references |
Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x |
es_ES |
dc.description.references |
Fujioka, S., Li, J., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., … Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 9(11), 1951-1962. doi:10.1105/tpc.9.11.1951 |
es_ES |
dc.description.references |
Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309 |
es_ES |
dc.description.references |
Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109 |
es_ES |
dc.description.references |
García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229 |
es_ES |
dc.description.references |
Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910 |
es_ES |
dc.description.references |
Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231 |
es_ES |
dc.description.references |
He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S. L., Gendron, N., Sun, C. Q., & Wang, Z.-Y. (2005). BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 307(5715), 1634-1638. doi:10.1126/science.1107580 |
es_ES |
dc.description.references |
Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070 |
es_ES |
dc.description.references |
Kurepin, L. V., Joo, S.-H., Kim, S.-K., Pharis, R. P., & Back, T. G. (2011). Interaction of Brassinosteroids with Light Quality and Plant Hormones in Regulating Shoot Growth of Young Sunflower and Arabidopsis Seedlings. Journal of Plant Growth Regulation, 31(2), 156-164. doi:10.1007/s00344-011-9227-7 |
es_ES |
dc.description.references |
Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in
Arabidopsis. Science Signaling, 5(244). doi:10.1126/scisignal.2002908 |
es_ES |
dc.description.references |
Li, X.-J., Chen, X.-J., Guo, X., Yin, L.-L., Ahammed, G. J., Xu, C.-J., … Yu, J.-Q. (2015). DWARFoverexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 14(3), 1021-1033. doi:10.1111/pbi.12474 |
es_ES |
dc.description.references |
Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879 |
es_ES |
dc.description.references |
Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154 |
es_ES |
dc.description.references |
Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942 |
es_ES |
dc.description.references |
Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., … Bishop, G. J. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42(2), 262-269. doi:10.1111/j.1365-313x.2005.02376.x |
es_ES |
dc.description.references |
Müller, C. J., Larsson, E., Spíchal, L., & Sundberg, E. (2017). Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning. Plant Physiology, 175(3), 1144-1157. doi:10.1104/pp.17.00805 |
es_ES |
dc.description.references |
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x |
es_ES |
dc.description.references |
Olimpieri, I., Siligato, F., Caccia, R., Soressi, G. P., Mazzucato, A., Mariotti, L., & Ceccarelli, N. (2007). Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4), 877-888. doi:10.1007/s00425-007-0533-z |
es_ES |
dc.description.references |
Paz-Ares, J., & The REGIA Consortium. (2002). REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 3(2), 102-108. doi:10.1002/cfg.146 |
es_ES |
dc.description.references |
Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194 |
es_ES |
dc.description.references |
Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002 |
es_ES |
dc.description.references |
Sabelli, P. A., & Larkins, B. A. (2009). The Development of Endosperm in Grasses. Plant Physiology, 149(1), 14-26. doi:10.1104/pp.108.129437 |
es_ES |
dc.description.references |
Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555 |
es_ES |
dc.description.references |
Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x |
es_ES |
dc.description.references |
Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7 |
es_ES |
dc.description.references |
Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335 |
es_ES |
dc.description.references |
Serrani, J. C., Carrera, E., Ruiz-Rivero, O., Gallego-Giraldo, L., Peres, Lá. E. P., & García-Martínez, J. L. (2010). Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins
. Plant Physiology, 153(2), 851-862. doi:10.1104/pp.110.155424 |
es_ES |
dc.description.references |
Sun, T. (2010). Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiology, 154(2), 567-570. doi:10.1104/pp.110.161554 |
es_ES |
dc.description.references |
Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036 |
es_ES |
dc.description.references |
Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3 |
es_ES |
dc.description.references |
Tang, Y., Liu, H., Guo, S., Wang, B., Li, Z., Chong, K., & Xu, Y. (2017). OsmiR396d Affects Gibberellin and Brassinosteroid Signaling to Regulate Plant Architecture in Rice. Plant Physiology, 176(1), 946-959. doi:10.1104/pp.17.00964 |
es_ES |
dc.description.references |
Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., … Chu, C. (2014). Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice
. The Plant Cell, 26(11), 4376-4393. doi:10.1105/tpc.114.132092 |
es_ES |
dc.description.references |
Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure inArabidopsis . The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069 |
es_ES |
dc.description.references |
Tursun, B., Cochella, L., Carrera, I., & Hobert, O. (2009). A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans. PLoS ONE, 4(3), e4625. doi:10.1371/journal.pone.0004625 |
es_ES |
dc.description.references |
Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., … Poppenberger, B. (2015). Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. The Plant Cell, 27(8), 2261-2272. doi:10.1105/tpc.15.00433 |
es_ES |
dc.description.references |
Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., … Chory, J. (2002). Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2(4), 505-513. doi:10.1016/s1534-5807(02)00153-3 |
es_ES |
dc.description.references |
Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49 |
es_ES |
dc.description.references |
Xiao, Y., Liu, D., Zhang, G., Tong, H., & Chu, C. (2017). Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01698 |
es_ES |