Mostrar el registro sencillo del ítem
dc.contributor.author | Carpitella, Silvia | es_ES |
dc.contributor.author | Del Olmo, Gonzalo | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Husband, Stewart | es_ES |
dc.contributor.author | Boxall, Joby | es_ES |
dc.contributor.author | Douterelo, Isabel | es_ES |
dc.date.accessioned | 2021-03-04T04:30:58Z | |
dc.date.available | 2021-03-04T04:30:58Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162955 | |
dc.description.abstract | [EN] This paper uses a two-fold multi-criteria decision-making (MCDM) approach applied for the first time to the field of microbial management of drinking water distribution systems (DWDS). Specifically, the decision-making trial and evaluation laboratory (DEMATEL) was applied removing the need for reliance on expert judgement, and analysed interdependencies among water quality parameters and microbiological characteristics of DWDS composed of different pipe materials. In addition, the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) ranked the most common bacteria identified during trials in a DWDS according to their relative abundance while managing vagueness affecting the measurements. The novel integrated approach presented and proven here for an initial real world data set provides new insights in the interdependence of environmental conditions and microbial populations. Specifically, the application shows as the bacteria having associated the most significant microbial impact may not be the most abundant. This offers the potential for integrated management strategies to promote favourable microbial conditions to help safeguard drinking water quality. | es_ES |
dc.description.sponsorship | The research reported here was supported by the UK Engineering and Physical Sciences Research Council (EPSRC), EPSRC-LWEC Challenge Fellowship EP/N02950X/1. We also would like to thank United Utilities for sampling sites, field work and physicochemical sample analysis. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Drinking water distribution systems | es_ES |
dc.subject | Water quality monitoring | es_ES |
dc.subject | Microbiological assessment | es_ES |
dc.subject | Multi-criteria system analysis | es_ES |
dc.subject | DEMATEL | es_ES |
dc.subject | FTOPSIS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Decision-Making Tools to Manage the Microbiology of Drinking Water Distribution Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12051247 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FN02950X%2F1/GB/Uncovering microbial tactics in drinking water supply systems: using advances in genetics for countering the effects of climate change/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Carpitella, S.; Del Olmo, G.; Izquierdo Sebastián, J.; Husband, S.; Boxall, J.; Douterelo, I. (2020). Decision-Making Tools to Manage the Microbiology of Drinking Water Distribution Systems. Water. 12(5):1-18. https://doi.org/10.3390/w12051247 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12051247 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\411412 | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.description.references | Guidelines for Drinking Water Quality, 4th Edition, Incorporating the 1st Addendum 2017 https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ | es_ES |
dc.description.references | Water Quality-Sampling-Part 5: Guidance on Sampling of Drinking Water from Treatment Works and Piped Distribution Systems https://www.iso.org/obp/ui/#iso:std:iso:5667:-5:ed-2:v1:en | es_ES |
dc.description.references | Deng, W., & Wang, G. (2017). A novel water quality data analysis framework based on time-series data mining. Journal of Environmental Management, 196, 365-375. doi:10.1016/j.jenvman.2017.03.024 | es_ES |
dc.description.references | McClymont, K., Keedwell, E., & Savic, D. (2015). An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design. Environmental Modelling & Software, 69, 414-424. doi:10.1016/j.envsoft.2014.12.023 | es_ES |
dc.description.references | Izquierdo, J., Montalvo, I., Pérez-García, R., & Matías, A. (2012). On the Complexities of the Design of Water Distribution Networks. Mathematical Problems in Engineering, 2012, 1-25. doi:10.1155/2012/947961 | es_ES |
dc.description.references | Fox, S., Shepherd, W., Collins, R., & Boxall, J. (2016). Experimental Quantification of Contaminant Ingress into a Buried Leaking Pipe during Transient Events. Journal of Hydraulic Engineering, 142(1), 04015036. doi:10.1061/(asce)hy.1943-7900.0001040 | es_ES |
dc.description.references | Mounce, S. R., Mounce, R. B., & Boxall, J. B. (2010). Novelty detection for time series data analysis in water distribution systems using support vector machines. Journal of Hydroinformatics, 13(4), 672-686. doi:10.2166/hydro.2010.144 | es_ES |
dc.description.references | Vališ, D., Hasilová, K., Forbelská, M., & Vintr, Z. (2020). Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data. Measurement, 149, 107026. doi:10.1016/j.measurement.2019.107026 | es_ES |
dc.description.references | Liu, G., Bakker, G. L., Li, S., Vreeburg, J. H. G., Verberk, J. Q. J. C., Medema, G. J., … Van Dijk, J. C. (2014). Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm. Environmental Science & Technology, 48(10), 5467-5476. doi:10.1021/es5009467 | es_ES |
dc.description.references | Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clinical Microbiology Reviews, 15(2), 167-193. doi:10.1128/cmr.15.2.167-193.2002 | es_ES |
dc.description.references | Douterelo, I., Husband, S., Loza, V., & Boxall, J. (2016). Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems. Applied and Environmental Microbiology, 82(14), 4155-4168. doi:10.1128/aem.00109-16 | es_ES |
dc.description.references | Wang, H., Hu, C., Hu, X., Yang, M., & Qu, J. (2012). Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Research, 46(4), 1070-1078. doi:10.1016/j.watres.2011.12.001 | es_ES |
dc.description.references | Husband, S., Fish, K. E., Douterelo, I., & Boxall, J. (2016). Linking discolouration modelling and biofilm behaviour within drinking water distribution systems. Water Supply, 16(4), 942-950. doi:10.2166/ws.2016.045 | es_ES |
dc.description.references | Wingender, J., & Flemming, H.-C. (2011). Biofilms in drinking water and their role as reservoir for pathogens. International Journal of Hygiene and Environmental Health, 214(6), 417-423. doi:10.1016/j.ijheh.2011.05.009 | es_ES |
dc.description.references | Douterelo, I., Boxall, J. B., Deines, P., Sekar, R., Fish, K. E., & Biggs, C. A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Research, 65, 134-156. doi:10.1016/j.watres.2014.07.008 | es_ES |
dc.description.references | Douterelo, I., Sharpe, R. L., & Boxall, J. B. (2013). Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Research, 47(2), 503-516. doi:10.1016/j.watres.2012.09.053 | es_ES |
dc.description.references | Harwani, D. (2012). The Great Plate Count Anomaly and the Unculturable Bacteria. International Journal of Scientific Research, 2(9), 350-351. doi:10.15373/22778179/sep2013/122 | es_ES |
dc.description.references | Ikonen, J., Pitkänen, T., Kosse, P., Ciszek, R., Kolehmainen, M., & Miettinen, I. T. (2017). On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system. Journal of Environmental Management, 198, 384-392. doi:10.1016/j.jenvman.2017.04.090 | es_ES |
dc.description.references | Wang, Z., Chen, Q., Zhang, J., Dong, J., Yan, H., Chen, C., & Feng, R. (2019). Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River. Journal of Environmental Management, 244, 13-22. doi:10.1016/j.jenvman.2019.04.070 | es_ES |
dc.description.references | Yu, J., Kim, D., & Lee, T. (2010). Microbial diversity in biofilms on water distribution pipes of different materials. Water Science and Technology, 61(1), 163-171. doi:10.2166/wst.2010.813 | es_ES |
dc.description.references | Rogers, J. W., & Louis, G. E. (2008). Risk and opportunity in upgrading the US drinking water infrastructure system. Journal of Environmental Management, 87(1), 26-36. doi:10.1016/j.jenvman.2007.01.002 | es_ES |
dc.description.references | Henriques, J. J., & Louis, G. E. (2011). A decision model for selecting sustainable drinking water supply and greywater reuse systems for developing communities with a case study in Cimahi, Indonesia. Journal of Environmental Management, 92(1), 214-222. doi:10.1016/j.jenvman.2010.09.016 | es_ES |
dc.description.references | Ramos-Martínez, E., Herrera, M., Gutiérrez-Pérez, J., Izquierdo, J., & Pérez-García, R. (2014). Rehabilitation Actions in Water Supply Systems: Effects on Biofilm Susceptibility. Procedia Engineering, 89, 225-231. doi:10.1016/j.proeng.2014.11.181 | es_ES |
dc.description.references | Dalvi-Esfahani, M., Niknafs, A., Kuss, D. J., Nilashi, M., & Afrough, S. (2019). Social media addiction: Applying the DEMATEL approach. Telematics and Informatics, 43, 101250. doi:10.1016/j.tele.2019.101250 | es_ES |
dc.description.references | Si, S.-L., You, X.-Y., Liu, H.-C., & Zhang, P. (2018). DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Mathematical Problems in Engineering, 2018, 1-33. doi:10.1155/2018/3696457 | es_ES |
dc.description.references | Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9. doi:10.1016/s0165-0114(97)00377-1 | es_ES |
dc.description.references | Gul, M., & Ak, M. F. (2018). A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. Journal of Cleaner Production, 196, 653-664. doi:10.1016/j.jclepro.2018.06.106 | es_ES |
dc.description.references | Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402. doi:10.1016/j.ress.2017.09.017 | es_ES |
dc.description.references | Palczewski, K., & Sałabun, W. (2019). The fuzzy TOPSIS applications in the last decade. Procedia Computer Science, 159, 2294-2303. doi:10.1016/j.procs.2019.09.404 | es_ES |
dc.description.references | Sarkar, S., Pratihar, D. K., & Sarkar, B. (2018). An integrated fuzzy multiple criteria supplier selection approach and its application in a welding company. Journal of Manufacturing Systems, 46, 163-178. doi:10.1016/j.jmsy.2017.12.004 | es_ES |
dc.description.references | Dinçer, H., Yüksel, S., & Martínez, L. (2019). Interval type 2-based hybrid fuzzy evaluation of financial services in E7 economies with DEMATEL-ANP and MOORA methods. Applied Soft Computing, 79, 186-202. doi:10.1016/j.asoc.2019.03.018 | es_ES |
dc.description.references | Chen, J.-K., & Chen, I.-S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications, 37(3), 1981-1990. doi:10.1016/j.eswa.2009.06.079 | es_ES |
dc.description.references | Nilashi, M., Samad, S., Manaf, A. A., Ahmadi, H., Rashid, T. A., Munshi, A., … Hassan Ahmed, O. (2019). Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach. Computers & Industrial Engineering, 137, 106005. doi:10.1016/j.cie.2019.106005 | es_ES |
dc.description.references | Li, G., Ma, X., Chen, R., Yu, Y., Tao, H., & Shi, B. (2019). Field studies of manganese deposition and release in drinking water distribution systems: Insight into deposit control. Water Research, 163, 114897. doi:10.1016/j.watres.2019.114897 | es_ES |
dc.description.references | Zhu, Y., Wang, H., Li, X., Hu, C., Yang, M., & Qu, J. (2014). Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection. Water Research, 60, 174-181. doi:10.1016/j.watres.2014.04.035 | es_ES |
dc.description.references | Du, Y.-W., & Zhou, W. (2019). New improved DEMATEL method based on both subjective experience and objective data. Engineering Applications of Artificial Intelligence, 83, 57-71. doi:10.1016/j.engappai.2019.05.001 | es_ES |
dc.description.references | Carpitella, S., Carpitella, F., Certa, A., Benítez, J., & Izquierdo, J. (2018). Managing Human Factors to Reduce Organisational Risk in Industry. Mathematical and Computational Applications, 23(4), 67. doi:10.3390/mca23040067 | es_ES |
dc.description.references | Gerami Seresht, N., & Fayek, A. R. (2019). Computational method for fuzzy arithmetic operations on triangular fuzzy numbers by extension principle. International Journal of Approximate Reasoning, 106, 172-193. doi:10.1016/j.ijar.2019.01.005 | es_ES |
dc.description.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x | es_ES |
dc.description.references | Prokopowicz, P. (2019). The use of Ordered Fuzzy Numbers for modelling changes in dynamic processes. Information Sciences, 470, 1-14. doi:10.1016/j.ins.2018.08.045 | es_ES |
dc.description.references | Okunuki, S., Kawaharasaki, M., Tanaka, H., & Kanagawa, T. (2004). Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor. Water Research, 38(9), 2433-2439. doi:10.1016/j.watres.2004.02.008 | es_ES |
dc.description.references | Rofner, C., Sommaruga, R., & Teresa Pérez, M. (2016). Phosphate and ATP uptake by lake bacteria: does taxonomical identity matter? Environmental Microbiology, 18(12), 4782-4793. doi:10.1111/1462-2920.13368 | es_ES |
dc.description.references | Ferro, P., Vaz-Moreira, I., & Manaia, C. M. (2019). Betaproteobacteria are predominant in drinking water: are there reasons for concern? Critical Reviews in Microbiology, 45(5-6), 649-667. doi:10.1080/1040841x.2019.1680602 | es_ES |
dc.description.references | Ertekin, E., Hatt, J. K., Konstantinidis, K. T., & Tezel, U. (2016). Similar Microbial Consortia and Genes Are Involved in the Biodegradation of Benzalkonium Chlorides in Different Environments. Environmental Science & Technology, 50(8), 4304-4313. doi:10.1021/acs.est.5b05959 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |