dc.contributor.author |
Martí Selva, María Luisa
|
es_ES |
dc.contributor.author |
Puertas Medina, Rosa María
|
es_ES |
dc.date.accessioned |
2021-03-05T04:31:53Z |
|
dc.date.available |
2021-03-05T04:31:53Z |
|
dc.date.issued |
2020-06-20 |
es_ES |
dc.identifier.issn |
0048-9697 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/163176 |
|
dc.description.abstract |
[EN] Population inequality and climate change are two of the factors that aremost disruptive to the ecological balance; accordingly, there have been countless studies in recent years focusing on analysing the Ecological Footprint (EF) and Biocapacity (BC). The markedly disparate characteristics of African countries have motivated the choice of this geographic area as the focus of the research. First, this study uses Data Envelopment Analysis (DEA) to calculate the efficiency of 45 African countries, taking their EF and country size as determinants of the level of production. Second, the effect of time on EF and BC is analysed using Ordinary Least Squares estimation, in order to determine possible trends in both variables and to drawconclusions that indicate themost appropriate environmental policies to adopt. The results reveal similar efficiency levels between one group of countrieswith ecological deficits and anotherwith ecological surpluses. Also, the countries that have a deficit in terms of BC, but a level of resource consumption appropriate to their production volume, need to introduce technological advances that foster sustainable economic development, helping them to adapt to their existing BC. In addition, by incorporating innovative technologies, these countries should be able to transform their existing overpopulation problem into a potential labour force that fosters their sustainable growth. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
The Science of The Total Environment |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Ecological Footprint |
es_ES |
dc.subject |
Biocapacity |
es_ES |
dc.subject |
Africa |
es_ES |
dc.subject |
Efficiency |
es_ES |
dc.subject.classification |
ECONOMIA APLICADA |
es_ES |
dc.title |
Analysis of the efficiency of African countries through their Ecological Footprint and Biocapacity |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.scitotenv.2020.137504 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials |
es_ES |
dc.description.bibliographicCitation |
Martí Selva, ML.; Puertas Medina, RM. (2020). Analysis of the efficiency of African countries through their Ecological Footprint and Biocapacity. The Science of The Total Environment. (722):1-12. https://doi.org/10.1016/j.scitotenv.2020.137504 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.scitotenv.2020.137504 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
12 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.issue |
722 |
es_ES |
dc.identifier.pmid |
32208234 |
es_ES |
dc.relation.pasarela |
S\406541 |
es_ES |
dc.description.references |
Al-mulali Usama, & Binti Che Sab, C. N. (2012). The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy, 39(1), 180-186. doi:10.1016/j.energy.2012.01.032 |
es_ES |
dc.description.references |
Al-Mulali, U., & Ozturk, I. (2015). The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region. Energy, 84, 382-389. doi:10.1016/j.energy.2015.03.004 |
es_ES |
dc.description.references |
Anand, A., Winfred Rufuss, D. D., Rajkumar, V., & Suganthi, L. (2017). Evaluation of Sustainability Indicators in Smart Cities for India Using MCDM Approach. Energy Procedia, 141, 211-215. doi:10.1016/j.egypro.2017.11.094 |
es_ES |
dc.description.references |
Aydin, C., Esen, Ö., & Aydin, R. (2019). Is the ecological footprint related to the Kuznets curve a real process or rationalizing the ecological consequences of the affluence? Evidence from PSTR approach. Ecological Indicators, 98, 543-555. doi:10.1016/j.ecolind.2018.11.034 |
es_ES |
dc.description.references |
Bagliani, M., Bravo, G., & Dalmazzone, S. (2008). A consumption-based approach to environmental Kuznets curves using the ecological footprint indicator. Ecological Economics, 65(3), 650-661. doi:10.1016/j.ecolecon.2008.01.010 |
es_ES |
dc.description.references |
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078 |
es_ES |
dc.description.references |
Bekun, F. V., Emir, F., & Sarkodie, S. A. (2019). Another look at the relationship between energy consumption, carbon dioxide emissions, and economic growth in South Africa. Science of The Total Environment, 655, 759-765. doi:10.1016/j.scitotenv.2018.11.271 |
es_ES |
dc.description.references |
Bugri, J. T. (2008). The dynamics of tenure security, agricultural production and environmental degradation in Africa: Evidence from stakeholders in north-east Ghana. Land Use Policy, 25(2), 271-285. doi:10.1016/j.landusepol.2007.08.002 |
es_ES |
dc.description.references |
Carlucci, F., Cirà, A., & Coccorese, P. (2018). Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy. Sustainability, 10(2), 400. doi:10.3390/su10020400 |
es_ES |
dc.description.references |
Chang, M.-C. (2015). Room for improvement in low carbon economies of G7 and BRICS countries based on the analysis of energy efficiency and environmental Kuznets curves. Journal of Cleaner Production, 99, 140-151. doi:10.1016/j.jclepro.2015.03.002 |
es_ES |
dc.description.references |
Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76, 138-154. doi:10.1016/j.rser.2017.03.031 |
es_ES |
dc.description.references |
Chen, X., & Gong, Z. (2017). DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation Policy Constraints. Sustainability, 9(2), 210. doi:10.3390/su9020210 |
es_ES |
dc.description.references |
Fu, W., Turner, J. C., Zhao, J., & Du, G. (2015). Ecological footprint (EF): An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Ecological Indicators, 48, 464-471. doi:10.1016/j.ecolind.2014.09.023 |
es_ES |
dc.description.references |
Galli, A., Kitzes, J., Niccolucci, V., Wackernagel, M., Wada, Y., & Marchettini, N. (2012). Assessing the global environmental consequences of economic growth through the Ecological Footprint: A focus on China and India. Ecological Indicators, 17, 99-107. doi:10.1016/j.ecolind.2011.04.022 |
es_ES |
dc.description.references |
Hernández-Sancho, F., Molinos-Senante, M., & Sala-Garrido, R. (2011). Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Science of The Total Environment, 409(14), 2693-2699. doi:10.1016/j.scitotenv.2011.04.018 |
es_ES |
dc.description.references |
Jaafar, H., Mourad, R., & Daghir, N. (2019). Dataset used for assessing animal and poultry production water footprint in selected countries of the MENA region. Data in Brief, 27, 104621. doi:10.1016/j.dib.2019.104621 |
es_ES |
dc.description.references |
Jorgenson, A. K., & Burns, T. J. (2007). The political-economic causes of change in the ecological footprints of nations, 1991–2001: A quantitative investigation. Social Science Research, 36(2), 834-853. doi:10.1016/j.ssresearch.2006.06.003 |
es_ES |
dc.description.references |
Shokri Kahi, V., Yousefi, S., Shabanpour, H., & Farzipoor Saen, R. (2017). How to evaluate sustainability of supply chains? A dynamic network DEA approach. Industrial Management & Data Systems, 117(9), 1866-1889. doi:10.1108/imds-09-2016-0389 |
es_ES |
dc.description.references |
Lacko, R., & Hajduová, Z. (2018). Determinants of Environmental Efficiency of the EU Countries Using Two-Step DEA Approach. Sustainability, 10(10), 3525. doi:10.3390/su10103525 |
es_ES |
dc.description.references |
Li, H., Dong, K., Sun, R., Yu, J., & Xu, J. (2017). Sustainability Assessment of Refining Enterprises Using a DEA-Based Model. Sustainability, 9(4), 620. doi:10.3390/su9040620 |
es_ES |
dc.description.references |
Li, M., Mi, Z., Coffman, D., & Wei, Y.-M. (2018). Assessing the policy impacts on non-ferrous metals industry’s CO2 reduction: Evidence from China. Journal of Cleaner Production, 192, 252-261. doi:10.1016/j.jclepro.2018.05.015 |
es_ES |
dc.description.references |
Liu, J., Liu, H., Yao, X.-L., & Liu, Y. (2016). Evaluating the sustainability impact of consolidation policy in China’s coal mining industry: a data envelopment analysis. Journal of Cleaner Production, 112, 2969-2976. doi:10.1016/j.jclepro.2015.08.011 |
es_ES |
dc.description.references |
Mzoughi, N. (2011). Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter? Ecological Economics, 70(8), 1536-1545. doi:10.1016/j.ecolecon.2011.03.016 |
es_ES |
dc.description.references |
Niccolucci, V., Tiezzi, E., Pulselli, F. M., & Capineri, C. (2012). Biocapacity vs Ecological Footprint of world regions: A geopolitical interpretation. Ecological Indicators, 16, 23-30. doi:10.1016/j.ecolind.2011.09.002 |
es_ES |
dc.description.references |
Olanipekun, I. O., Olasehinde-Williams, G. O., & Alao, R. O. (2019). Agriculture and environmental degradation in Africa: The role of income. Science of The Total Environment, 692, 60-67. doi:10.1016/j.scitotenv.2019.07.129 |
es_ES |
dc.description.references |
Oppon, E., Acquaye, A., Ibn-Mohammed, T., & Koh, L. (2018). Modelling Multi-regional Ecological Exchanges: The Case of UK and Africa. Ecological Economics, 147, 422-435. doi:10.1016/j.ecolecon.2018.01.030 |
es_ES |
dc.description.references |
Owusu-Sekyere, E., Jordaan, H., & Chouchane, H. (2017). Evaluation of water footprint and economic water productivities of dairy products of South Africa. Ecological Indicators, 83, 32-40. doi:10.1016/j.ecolind.2017.07.041 |
es_ES |
dc.description.references |
Ozcan, B., Ulucak, R., & Dogan, E. (2019). Analyzing long lasting effects of environmental policies: Evidence from low, middle and high income economies. Sustainable Cities and Society, 44, 130-143. doi:10.1016/j.scs.2018.09.025 |
es_ES |
dc.description.references |
Ozturk, I., Al-Mulali, U., & Saboori, B. (2015). Investigating the environmental Kuznets curve hypothesis: the role of tourism and ecological footprint. Environmental Science and Pollution Research, 23(2), 1916-1928. doi:10.1007/s11356-015-5447-x |
es_ES |
dc.description.references |
Rauf, A., Liu, X., Amin, W., Ozturk, I., Rehman, O., & Sarwar, S. (2018). Energy and Ecological Sustainability: Challenges and Panoramas in Belt and Road Initiative Countries. Sustainability, 10(8), 2743. doi:10.3390/su10082743 |
es_ES |
dc.description.references |
Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization, 4(2), 121-130. doi:10.1177/095624789200400212 |
es_ES |
dc.description.references |
Rudolph, A., & Figge, L. (2017). Determinants of Ecological Footprints: What is the role of globalization? Ecological Indicators, 81, 348-361. doi:10.1016/j.ecolind.2017.04.060 |
es_ES |
dc.description.references |
Solarin, S. A., & Bello, M. O. (2018). Persistence of policy shocks to an environmental degradation index: The case of ecological footprint in 128 developed and developing countries. Ecological Indicators, 89, 35-44. doi:10.1016/j.ecolind.2018.01.064 |
es_ES |
dc.description.references |
Sun, M., Wang, Y., Shi, L., & Klemeš, J. J. (2018). Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 92, 823-833. doi:10.1016/j.rser.2018.04.036 |
es_ES |
dc.description.references |
Ulucak, R., & Apergis, N. (2018). Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environmental Science & Policy, 80, 21-27. doi:10.1016/j.envsci.2017.11.002 |
es_ES |
dc.description.references |
Ulucak, R., & Lin, D. (2017). Persistence of policy shocks to Ecological Footprint of the USA. Ecological Indicators, 80, 337-343. doi:10.1016/j.ecolind.2017.05.020 |
es_ES |
dc.description.references |
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., … Watson, J. E. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7(1). doi:10.1038/ncomms12558 |
es_ES |
dc.description.references |
Wackernagel, M., Onisto, L., Bello, P., Callejas Linares, A., Susana López Falfán, I., Méndez Garcı́a, J., … Guadalupe Suárez Guerrero, M. (1999). National natural capital accounting with the ecological footprint concept. Ecological Economics, 29(3), 375-390. doi:10.1016/s0921-8009(98)90063-5 |
es_ES |
dc.description.references |
Wang, K., Lu, B., & Wei, Y.-M. (2013). China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis. Applied Energy, 112, 1403-1415. doi:10.1016/j.apenergy.2013.04.021 |
es_ES |
dc.description.references |
White, T. J. (2007). Sharing resources: The global distribution of the Ecological Footprint. Ecological Economics, 64(2), 402-410. doi:10.1016/j.ecolecon.2007.07.024 |
es_ES |
dc.description.references |
Yang, W.-C., Lee, Y.-M., & Hu, J.-L. (2016). Urban sustainability assessment of Taiwan based on data envelopment analysis. Renewable and Sustainable Energy Reviews, 61, 341-353. doi:10.1016/j.rser.2016.04.015 |
es_ES |
dc.description.references |
Yilanci, V., Gorus, M. S., & Aydin, M. (2019). Are shocks to ecological footprint in OECD countries permanent or temporary? Journal of Cleaner Production, 212, 270-301. doi:10.1016/j.jclepro.2018.11.299 |
es_ES |
dc.description.references |
Zeng, S., Nan, X., Liu, C., & Chen, J. (2017). The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices. Energy Policy, 106, 111-121. doi:10.1016/j.enpol.2017.03.046 |
es_ES |
dc.description.references |
Zeng, S., Jiang, C., Ma, C., & Su, B. (2018). Investment efficiency of the new energy industry in China. Energy Economics, 70, 536-544. doi:10.1016/j.eneco.2017.12.023 |
es_ES |
dc.description.references |
Zhang, N., Kong, F., & Choi, Y. (2014). Measuring sustainability performance for China: A sequential generalized directional distance function approach. Economic Modelling, 41, 392-397. doi:10.1016/j.econmod.2014.05.038 |
es_ES |
dc.description.references |
Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European Journal of Operational Research, 264(1), 1-16. doi:10.1016/j.ejor.2017.06.023 |
es_ES |