- -

Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2021-03-05T04:32:35Z
dc.date.available 2021-03-05T04:32:35Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1070-5325 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163192
dc.description.abstract [EN] In the quadratic eigenvalue problem (QEP) with all coefficient matrices symmetric, there can be complex eigenvalues. However, some applications need to compute real eigenvalues only. We propose a Lanczos-based method for computing all real eigenvalues contained in a given interval of large-scale symmetric QEPs. The method uses matrix inertias of the quadratic polynomial evaluated at different shift values. In this way, for hyperbolic problems, it is possible to make sure that all eigenvalues in the interval have been computed. We also discuss the general nonhyperbolic case. Our implementation is memory-efficient by representing the computed pseudo-Lanczos basis in a compact tensor product representation. We show results of computational experiments with a parallel implementation in the SLEPc library. es_ES
dc.description.sponsorship Agencia Estatal de Investigacion, Grant/Award Number: TIN2016-75985-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Numerical Linear Algebra with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Inertia es_ES
dc.subject Parallel computing es_ES
dc.subject Pseudo-Lanczos es_ES
dc.subject Quadratic eigenvalue problem es_ES
dc.subject SLEPc es_ES
dc.subject Symmetric linearization es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nla.2293 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Campos, C.; Román Moltó, JE. (2020). Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems. Numerical Linear Algebra with Applications. 27(4):1-17. https://doi.org/10.1002/nla.2293 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/nla.2293 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\425586 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Tisseur, F., & Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. doi:10.1137/s0036144500381988 es_ES
dc.description.references Veselić, K. (2011). Damped Oscillations of Linear Systems. Lecture Notes in Mathematics. doi:10.1007/978-3-642-21335-9 es_ES
dc.description.references Grimes, R. G., Lewis, J. G., & Simon, H. D. (1994). A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 15(1), 228-272. doi:10.1137/s0895479888151111 es_ES
dc.description.references Campos, C., & Roman, J. E. (2012). Strategies for spectrum slicing based on restarted Lanczos methods. Numerical Algorithms, 60(2), 279-295. doi:10.1007/s11075-012-9564-z es_ES
dc.description.references Li, R., Xi, Y., Vecharynski, E., Yang, C., & Saad, Y. (2016). A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems. SIAM Journal on Scientific Computing, 38(4), A2512-A2534. doi:10.1137/15m1054493 es_ES
dc.description.references Guo, C.-H., Higham, N. J., & Tisseur, F. (2010). An Improved Arc Algorithm for Detecting Definite Hermitian Pairs. SIAM Journal on Matrix Analysis and Applications, 31(3), 1131-1151. doi:10.1137/08074218x es_ES
dc.description.references Niendorf, V., & Voss, H. (2010). Detecting hyperbolic and definite matrix polynomials. Linear Algebra and its Applications, 432(4), 1017-1035. doi:10.1016/j.laa.2009.10.014 es_ES
dc.description.references NakatsukasaY NoferiniV. Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems;2017. Preprint arXiv:1711.00495. es_ES
dc.description.references Parlett, B. N., & Chen, H. C. (1990). Use of indefinite pencils for computing damped natural modes. Linear Algebra and its Applications, 140, 53-88. doi:10.1016/0024-3795(90)90222-x es_ES
dc.description.references Campos, C., & Roman, J. E. (2016). Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems. BIT Numerical Mathematics, 56(4), 1213-1236. doi:10.1007/s10543-016-0601-5 es_ES
dc.description.references Guo, C.-H., & Lancaster, P. (2005). Algorithms for hyperbolic quadratic eigenvalue problems. Mathematics of Computation, 74(252), 1777-1792. doi:10.1090/s0025-5718-05-01748-5 es_ES
dc.description.references Li, H., & Cai, Y. (2015). Solving the real eigenvalues of hermitian quadratic eigenvalue problems via bisection. The Electronic Journal of Linear Algebra, 30, 721-743. doi:10.13001/1081-3810.1979 es_ES
dc.description.references RomanJE CamposC RomeroE andTomasA. SLEPc users manual. DSIC‐II/24/02–Revision 3.9. D. Sistemes Informàtics i Computació Universitat Politècnica de València;2018. es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Guo, J.-S., Lin, W.-W., & Wang, C.-S. (1995). Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra and its Applications, 225, 57-89. doi:10.1016/0024-3795(93)00318-t es_ES
dc.description.references Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936 es_ES
dc.description.references Bai, Z., & Su, Y. (2005). SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 26(3), 640-659. doi:10.1137/s0895479803438523 es_ES
dc.description.references Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034 es_ES
dc.description.references Yang, L., Sun, Y., & Gong, F. (2018). The inexact residual iteration method for quadratic eigenvalue problem and the analysis of convergence. Journal of Computational and Applied Mathematics, 332, 45-55. doi:10.1016/j.cam.2017.10.003 es_ES
dc.description.references Keçeli, M., Corsetti, F., Campos, C., Roman, J. E., Zhang, H., Vázquez-Mayagoitia, Á., … Wagner, A. F. (2018). SIESTA-SIPs: Massively parallel spectrum-slicing eigensolver for an ab initio molecular dynamics package. Journal of Computational Chemistry, 39(22), 1806-1814. doi:10.1002/jcc.25350 es_ES
dc.description.references Voss, H., Werner, B., & Hadeler, K. P. (1982). A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Mathematical Methods in the Applied Sciences, 4(1), 415-424. doi:10.1002/mma.1670040126 es_ES
dc.description.references Higham, N. J., Mackey, D. S., & Tisseur, F. (2009). Definite Matrix Polynomials and their Linearization by Definite Pencils. SIAM Journal on Matrix Analysis and Applications, 31(2), 478-502. doi:10.1137/080721406 es_ES
dc.description.references Al-Ammari, M., & Tisseur, F. (2012). Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification. Linear Algebra and its Applications, 436(10), 3954-3973. doi:10.1016/j.laa.2010.08.035 es_ES
dc.description.references Gohberg, I., Lancaster, P., & Rodman, L. (1980). Spectral Analysis of Selfadjoint Matrix Polynomials. The Annals of Mathematics, 112(1), 33. doi:10.2307/1971320 es_ES
dc.description.references RozložnÍk, M., Okulicka-DŁużewska, F., & Smoktunowicz, A. (2015). Cholesky-Like Factorization of Symmetric Indefinite Matrices and Orthogonalization with Respect to Bilinear Forms. SIAM Journal on Matrix Analysis and Applications, 36(2), 727-751. doi:10.1137/130947003 es_ES
dc.description.references Lu, D., Su, Y., & Bai, Z. (2016). Stability Analysis of the Two-level Orthogonal Arnoldi Procedure. SIAM Journal on Matrix Analysis and Applications, 37(1), 195-214. doi:10.1137/151005142 es_ES
dc.description.references Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458 es_ES
dc.description.references Higham, N. J., Mackey, D. S., Mackey, N., & Tisseur, F. (2007). Symmetric Linearizations for Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications, 29(1), 143-159. doi:10.1137/050646202 es_ES
dc.description.references BalayS AbhyankarS AdamsM et al. PETSc users manual. ANL‐95/11 ‐ Revision 3.10. Argonne National Laboratory;2018. es_ES
dc.description.references Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024 es_ES
dc.description.references Assink, J., Waxler, R., & Velea, D. (2017). A wide-angle high Mach number modal expansion for infrasound propagation. The Journal of the Acoustical Society of America, 141(3), 1781-1792. doi:10.1121/1.4977578 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem