Mostrar el registro sencillo del ítem
dc.contributor.author | Casabán Bartual, Mª Consuelo | es_ES |
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Egorova, Vera N. | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2021-03-05T04:32:37Z | |
dc.date.available | 2021-03-05T04:32:37Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163193 | |
dc.description.abstract | [EN] Random coupled parabolic partial differential models are solved numerically using random cosine Fourier transform together with non-Gaussian random numerical integration that captures the highly oscillatory behaviour of the involved integrands. Sufficient condition of spectral type imposed on the random matrices of the system is given so that the approximated stochastic process solution and its statistical moments are numerically convergent. Numerical experiments illustrate the results. | es_ES |
dc.description.sponsorship | Spanish Ministerio de Economia, Industria y Competitividad (MINECO); Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER UE), Grant/Award Number: MTM2017-89664-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random cosine Fourier transform | es_ES |
dc.subject | Random coupled parabolic partial differential system | es_ES |
dc.subject | Random oscillatory integration | es_ES |
dc.subject | Random spectral analysis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Integral transform solution of random coupled parabolic partial differential models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.6492 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Casabán Bartual, MC.; Company Rossi, R.; Egorova, VN.; Jódar Sánchez, LA. (2020). Integral transform solution of random coupled parabolic partial differential models. Mathematical Methods in the Applied Sciences. 43(14):8223-8236. https://doi.org/10.1002/mma.6492 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.6492 | es_ES |
dc.description.upvformatpinicio | 8223 | es_ES |
dc.description.upvformatpfin | 8236 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\416971 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Bäck, J., Nobile, F., Tamellini, L., & Tempone, R. (2010). Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. Spectral and High Order Methods for Partial Differential Equations, 43-62. doi:10.1007/978-3-642-15337-2_3 | es_ES |
dc.description.references | Bachmayr, M., Cohen, A., & Migliorati, G. (2016). Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 51(1), 321-339. doi:10.1051/m2an/2016045 | es_ES |
dc.description.references | Ernst, O. G., Sprungk, B., & Tamellini, L. (2018). Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs). SIAM Journal on Numerical Analysis, 56(2), 877-905. doi:10.1137/17m1123079 | es_ES |
dc.description.references | Sheng, D., & Axelsson, K. (1995). Uncoupling of coupled flows in soil—a finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19(8), 537-553. doi:10.1002/nag.1610190804 | es_ES |
dc.description.references | Mitchell, J. K. (1991). Conduction phenomena: from theory to geotechnical practice. Géotechnique, 41(3), 299-340. doi:10.1680/geot.1991.41.3.299 | es_ES |
dc.description.references | Das, P. K. (1991). Optical Signal Processing. doi:10.1007/978-3-642-74962-9 | es_ES |
dc.description.references | Ashkenazy, Y. (2017). Energy transfer of surface wind-induced currents to the deep ocean via resonance with the Coriolis force. Journal of Marine Systems, 167, 93-104. doi:10.1016/j.jmarsys.2016.11.019 | es_ES |
dc.description.references | Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764 | es_ES |
dc.description.references | Galiano, G. (2012). On a cross-diffusion population model deduced from mutation and splitting of a single species. Computers & Mathematics with Applications, 64(6), 1927-1936. doi:10.1016/j.camwa.2012.03.045 | es_ES |
dc.description.references | Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical solutions of random mean square Fisher‐KPP models with advection. Mathematical Methods in the Applied Sciences, 43(14), 8015-8031. doi:10.1002/mma.5942 | es_ES |
dc.description.references | Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness. Mathematics, 7(9), 853. doi:10.3390/math7090853 | es_ES |
dc.description.references | Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140. doi:10.1016/j.cam.2006.11.021 | es_ES |
dc.description.references | Iserles, A. (2004). On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA Journal of Numerical Analysis, 24(3), 365-391. doi:10.1093/imanum/24.3.365 | es_ES |
dc.description.references | Ma, J., & Liu, H. (2018). On the Convolution Quadrature Rule for Integral Transforms with Oscillatory Bessel Kernels. Symmetry, 10(7), 239. doi:10.3390/sym10070239 | es_ES |
dc.description.references | Jódar, L., & Goberna, D. (1996). Exact and analytic numerical solution of coupled diffusion problems in a semi-infinite medium. Computers & Mathematics with Applications, 31(9), 17-24. doi:10.1016/0898-1221(96)00038-7 | es_ES |
dc.description.references | Jódar, L., & Goberna, D. (1998). A matrix D’Alembert formula for coupled wave initial value problems. Computers & Mathematics with Applications, 35(9), 1-15. doi:10.1016/s0898-1221(98)00052-2 | es_ES |
dc.description.references | Ostrowski, A. M. (1959). A QUANTITATIVE FORMULATION OF SYLVESTER’S LAW OF INERTIA. Proceedings of the National Academy of Sciences, 45(5), 740-744. doi:10.1073/pnas.45.5.740 | es_ES |
dc.description.references | Ashkenazy, Y., Gildor, H., & Bel, G. (2015). The effect of stochastic wind on the infinite depth Ekman layer model. EPL (Europhysics Letters), 111(3), 39001. doi:10.1209/0295-5075/111/39001 | es_ES |