- -

Integral transform solution of random coupled parabolic partial differential models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integral transform solution of random coupled parabolic partial differential models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casabán Bartual, Mª Consuelo es_ES
dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Egorova, Vera N. es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2021-03-05T04:32:37Z
dc.date.available 2021-03-05T04:32:37Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163193
dc.description.abstract [EN] Random coupled parabolic partial differential models are solved numerically using random cosine Fourier transform together with non-Gaussian random numerical integration that captures the highly oscillatory behaviour of the involved integrands. Sufficient condition of spectral type imposed on the random matrices of the system is given so that the approximated stochastic process solution and its statistical moments are numerically convergent. Numerical experiments illustrate the results. es_ES
dc.description.sponsorship Spanish Ministerio de Economia, Industria y Competitividad (MINECO); Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER UE), Grant/Award Number: MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random cosine Fourier transform es_ES
dc.subject Random coupled parabolic partial differential system es_ES
dc.subject Random oscillatory integration es_ES
dc.subject Random spectral analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Integral transform solution of random coupled parabolic partial differential models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6492 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Casabán Bartual, MC.; Company Rossi, R.; Egorova, VN.; Jódar Sánchez, LA. (2020). Integral transform solution of random coupled parabolic partial differential models. Mathematical Methods in the Applied Sciences. 43(14):8223-8236. https://doi.org/10.1002/mma.6492 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6492 es_ES
dc.description.upvformatpinicio 8223 es_ES
dc.description.upvformatpfin 8236 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\416971 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Bäck, J., Nobile, F., Tamellini, L., & Tempone, R. (2010). Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. Spectral and High Order Methods for Partial Differential Equations, 43-62. doi:10.1007/978-3-642-15337-2_3 es_ES
dc.description.references Bachmayr, M., Cohen, A., & Migliorati, G. (2016). Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 51(1), 321-339. doi:10.1051/m2an/2016045 es_ES
dc.description.references Ernst, O. G., Sprungk, B., & Tamellini, L. (2018). Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs). SIAM Journal on Numerical Analysis, 56(2), 877-905. doi:10.1137/17m1123079 es_ES
dc.description.references Sheng, D., & Axelsson, K. (1995). Uncoupling of coupled flows in soil—a finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 19(8), 537-553. doi:10.1002/nag.1610190804 es_ES
dc.description.references Mitchell, J. K. (1991). Conduction phenomena: from theory to geotechnical practice. Géotechnique, 41(3), 299-340. doi:10.1680/geot.1991.41.3.299 es_ES
dc.description.references Das, P. K. (1991). Optical Signal Processing. doi:10.1007/978-3-642-74962-9 es_ES
dc.description.references Ashkenazy, Y. (2017). Energy transfer of surface wind-induced currents to the deep ocean via resonance with the Coriolis force. Journal of Marine Systems, 167, 93-104. doi:10.1016/j.jmarsys.2016.11.019 es_ES
dc.description.references Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500-544. doi:10.1113/jphysiol.1952.sp004764 es_ES
dc.description.references Galiano, G. (2012). On a cross-diffusion population model deduced from mutation and splitting of a single species. Computers & Mathematics with Applications, 64(6), 1927-1936. doi:10.1016/j.camwa.2012.03.045 es_ES
dc.description.references Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical solutions of random mean square Fisher‐KPP models with advection. Mathematical Methods in the Applied Sciences, 43(14), 8015-8031. doi:10.1002/mma.5942 es_ES
dc.description.references Casabán, M. C., Company, R., & Jódar, L. (2019). Numerical Integral Transform Methods for Random Hyperbolic Models with a Finite Degree of Randomness. Mathematics, 7(9), 853. doi:10.3390/math7090853 es_ES
dc.description.references Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140. doi:10.1016/j.cam.2006.11.021 es_ES
dc.description.references Iserles, A. (2004). On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA Journal of Numerical Analysis, 24(3), 365-391. doi:10.1093/imanum/24.3.365 es_ES
dc.description.references Ma, J., & Liu, H. (2018). On the Convolution Quadrature Rule for Integral Transforms with Oscillatory Bessel Kernels. Symmetry, 10(7), 239. doi:10.3390/sym10070239 es_ES
dc.description.references Jódar, L., & Goberna, D. (1996). Exact and analytic numerical solution of coupled diffusion problems in a semi-infinite medium. Computers & Mathematics with Applications, 31(9), 17-24. doi:10.1016/0898-1221(96)00038-7 es_ES
dc.description.references Jódar, L., & Goberna, D. (1998). A matrix D’Alembert formula for coupled wave initial value problems. Computers & Mathematics with Applications, 35(9), 1-15. doi:10.1016/s0898-1221(98)00052-2 es_ES
dc.description.references Ostrowski, A. M. (1959). A QUANTITATIVE FORMULATION OF SYLVESTER’S LAW OF INERTIA. Proceedings of the National Academy of Sciences, 45(5), 740-744. doi:10.1073/pnas.45.5.740 es_ES
dc.description.references Ashkenazy, Y., Gildor, H., & Bel, G. (2015). The effect of stochastic wind on the infinite depth Ekman layer model. EPL (Europhysics Letters), 111(3), 39001. doi:10.1209/0295-5075/111/39001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem