Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002
Antoons, G., Oros, A., Bito, V., Sipido, K. R., & Vos, M. A. (2007). Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. Journal of Electrocardiology, 40(6), S8-S14. doi:10.1016/j.jelectrocard.2007.05.022
Johnson, D. M., & Antoons, G. (2018). Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01453
[+]
Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002
Antoons, G., Oros, A., Bito, V., Sipido, K. R., & Vos, M. A. (2007). Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. Journal of Electrocardiology, 40(6), S8-S14. doi:10.1016/j.jelectrocard.2007.05.022
Johnson, D. M., & Antoons, G. (2018). Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01453
Saucerman, J. J., & McCulloch, A. D. (2004). Mechanistic systems models of cell signaling networks: a case study of myocyte adrenergic regulation. Progress in Biophysics and Molecular Biology, 85(2-3), 261-278. doi:10.1016/j.pbiomolbio.2004.01.005
A. William Tank, D. Lee Wong, Peripheral and Central Effects of Circulating Catecholamines, in: Compr. Physiol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2014: pp. 1–15. doi:https://doi.org/10.1002/cphy.c140007.
Lohse, M. J., Engelhardt, S., & Eschenhagen, T. (2003). What Is the Role of β-Adrenergic Signaling in Heart Failure? Circulation Research, 93(10), 896-906. doi:10.1161/01.res.0000102042.83024.ca
Port, J. D., & Bristow, M. R. (2001). Altered Beta-adrenergic Receptor Gene Regulation and Signaling in Chronic Heart Failure. Journal of Molecular and Cellular Cardiology, 33(5), 887-905. doi:10.1006/jmcc.2001.1358
Bozkurt, B. (2018). What Is New in Heart Failure Management in 2017? Update on ACC/AHA Heart Failure Guidelines. Current Cardiology Reports, 20(6). doi:10.1007/s11886-018-0978-7
Kubon, C., Mistry, N. B., Grundvold, I., Halvorsen, S., Kjeldsen, S. E., & Westheim, A. S. (2011). The role of beta-blockers in the treatment of chronic heart failure. Trends in Pharmacological Sciences, 32(4), 206-212. doi:10.1016/j.tips.2011.01.006
S. Chatterjee, G. Biondi-Zoccai, A. Abbate, F. D'Ascenzo, D. Castagno, B. Van Tassell, D. Mukherjee, E. Lichstein, Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis., BMJ. 346 (2013) f55. doi:https://doi.org/10.1136/bmj.f55.
Baker, J. G. (2005). The selectivity of β
-adrenoceptor antagonists at the human β
1, β
2 and β
3 adrenoceptors. British Journal of Pharmacology, 144(3), 317-322. doi:10.1038/sj.bjp.0706048
Poole-Wilson, P. A., Swedberg, K., Cleland, J. G., Di Lenarda, A., Hanrath, P., Komajda, M., … Skene, A. (2003). Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. The Lancet, 362(9377), 7-13. doi:10.1016/s0140-6736(03)13800-7
Heng, M. K. (1990). Beta, partial agonists to treat heart failure: Effects of xamoterol upon cardiac function and clinical status. Clinical Cardiology, 13(3), 171-176. doi:10.1002/clc.4960130305
Soltis, A. R., & Saucerman, J. J. (2010). Synergy between CaMKII Substrates and β-Adrenergic Signaling in Regulation of Cardiac Myocyte Ca2+ Handling. Biophysical Journal, 99(7), 2038-2047. doi:10.1016/j.bpj.2010.08.016
Rozier, K., & Bondarenko, V. E. (2017). Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. American Journal of Physiology-Cell Physiology, 312(5), C595-C623. doi:10.1152/ajpcell.00273.2016
Heijman, J., Volders, P. G. A., Westra, R. L., & Rudy, Y. (2011). Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca2+-transient. Journal of Molecular and Cellular Cardiology, 50(5), 863-871. doi:10.1016/j.yjmcc.2011.02.007
O’Hara, T., & Rudy, Y. (2012). Arrhythmia formation in subclinical («silent») long QT syndrome requires multiple insults: Quantitative mechanistic study using the KCNQ1 mutation Q357R as example. Heart Rhythm, 9(2), 275-282. doi:10.1016/j.hrthm.2011.09.066
Gong, J. Q. X., Susilo, M. E., Sher, A., Musante, C. J., & Sobie, E. A. (2020). Quantitative analysis of variability in an integrated model of human ventricular electrophysiology and β-adrenergic signaling. Journal of Molecular and Cellular Cardiology, 143, 96-106. doi:10.1016/j.yjmcc.2020.04.009
Sanchez-Alonso, J. L., Bhargava, A., O’Hara, T., Glukhov, A. V., Schobesberger, S., Bhogal, N., … Gorelik, J. (2016). Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circulation Research, 119(8), 944-955. doi:10.1161/circresaha.116.308698
Lang, D., Holzem, K., Kang, C., Xiao, M., Hwang, H. J., Ewald, G. A., … Efimov, I. R. (2015). Arrhythmogenic Remodeling of β
2
Versus β
1
Adrenergic Signaling in the Human Failing Heart. Circulation: Arrhythmia and Electrophysiology, 8(2), 409-419. doi:10.1161/circep.114.002065
Passini, E., Trovato, C., Morissette, P., Sannajust, F., Bueno‐Orovio, A., & Rodriguez, B. (2019). Drug‐induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. British Journal of Pharmacology, 176(19), 3819-3833. doi:10.1111/bph.14786
Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2
Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … Efimov, I. R. (2010). Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 106(5), 981-991. doi:10.1161/circresaha.109.204891
Antzelevitch, C. (2010). M Cells in the Human Heart. Circulation Research, 106(5), 815-817. doi:10.1161/circresaha.109.216226
Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., … Jamieson, S. (1986). Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation Research, 59(3), 297-309. doi:10.1161/01.res.59.3.297
Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198-205. doi:10.1038/415198a
Veldkamp, M. (2001). Norepinephrine induces action potential prolongation and early afterdepolarizations in ventricular myocytes isolated from human end-stage failing hearts. European Heart Journal, 22(11), 955-963. doi:10.1053/euhj.2000.2499
Wang, Y., Yuan, J., Qian, Z., Zhang, X., Chen, Y., Hou, X., & Zou, J. (2015). β2 adrenergic receptor activation governs cardiac repolarization and arrhythmogenesis in a guinea pig model of heart failure. Scientific Reports, 5(1). doi:10.1038/srep07681
Lowe, M. D. (2001). beta2 Adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium. Heart, 86(1), 45-51. doi:10.1136/heart.86.1.45
Nikolaev, V. O., Bünemann, M., Schmitteckert, E., Lohse, M. J., & Engelhardt, S. (2006). Cyclic AMP Imaging in Adult Cardiac Myocytes Reveals Far-Reaching β
1
-Adrenergic but Locally Confined β
2
-Adrenergic Receptor–Mediated Signaling. Circulation Research, 99(10), 1084-1091. doi:10.1161/01.res.0000250046.69918.d5
A.D. Loucks, T. O'Hara, N.A. Trayanova, Degradation of T-tubular microdomains and altered cAMP Compartmentation Lead to emergence of Arrhythmogenic triggers in heart failure Myocytes: an in silico study, Front. Physiol. 9 (2018) 1–12. doi:https://doi.org/10.3389/fphys.2018.01737.
Rocchetti, M., Alemanni, M., Mostacciuolo, G., Barassi, P., Altomare, C., Chisci, R., … Zaza, A. (2008). Modulation of Sarcoplasmic Reticulum Function by PST2744 [Istaroxime; (E,Z)-3-((2-Aminoethoxy)imino) Androstane-6,17-dione Hydrochloride)] in a Pressure-Overload Heart Failure Model. Journal of Pharmacology and Experimental Therapeutics, 326(3), 957-965. doi:10.1124/jpet.108.138701
Dong, X., & Thomas, D. D. (2014). Time-resolved FRET reveals the structural mechanism of SERCA–PLB regulation. Biochemical and Biophysical Research Communications, 449(2), 196-201. doi:10.1016/j.bbrc.2014.04.166
Lucia, C. de, Eguchi, A., & Koch, W. J. (2018). New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00904
Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E., & Lohse, M. J. (1993). Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 87(2), 454-463. doi:10.1161/01.cir.87.2.454
Böhm, M., Eschenhagen, T., Gierschik, P., Larisch, K., Lensche, H., Mende, U., … Erdmann, E. (1994). Radioimmunochemical Quantification of Giα in Right and Left Vehicles from Patients with Ischaemic and Dilated Cardiomyopathy and Predominant Left Ventricular Failure. Journal of Molecular and Cellular Cardiology, 26(2), 133-149. doi:10.1006/jmcc.1994.1017
Woo, A. Y.-H., Song, Y., Xiao, R.-P., & Zhu, W. (2014). Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. British Journal of Pharmacology, 172(23), 5444-5456. doi:10.1111/bph.12965
Schobesberger, S., Wright, P., Tokar, S., Bhargava, A., Mansfield, C., Glukhov, A. V., … Gorelik, J. (2017). T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovascular Research, 113(7), 770-782. doi:10.1093/cvr/cvx074
Bhogal, N., Hasan, A., & Gorelik, J. (2018). The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. Journal of Cardiovascular Development and Disease, 5(2), 25. doi:10.3390/jcdd5020025
DeSantiago, J., Ai, X., Islam, M., Acuna, G., Ziolo, M. T., Bers, D. M., & Pogwizd, S. M. (2008). Arrhythmogenic Effects of β
2
-Adrenergic Stimulation in the Failing Heart Are Attributable to Enhanced Sarcoplasmic Reticulum Ca Load. Circulation Research, 102(11), 1389-1397. doi:10.1161/circresaha.107.169011
Altschuld, R. A., Starling, R. C., Hamlin, R. L., Billman, G. E., Hensley, J., Castillo, L., … Lakatta, E. G. (1995). Response of Failing Canine and Human Heart Cells to β
2
-Adrenergic Stimulation. Circulation, 92(6), 1612-1618. doi:10.1161/01.cir.92.6.1612
V.O. Nikolaev, A. Moshkov, A.R. Lyon, M. Miragoli, P. Novak, H. Paur, M.J. Lohse, Y.E. Korchev, S.E. Harding, J. Gorelik, Beta2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation, Science (80-. ). 327 (2010) 1653–1657. doi:https://doi.org/10.1126/science.1185988.
Bryant, S. M., Kong, C. H. T., Cannell, M. B., Orchard, C. H., & James, A. F. (2018). Loss of caveolin-3-dependent regulation of ICa in rat ventricular myocytes in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 314(3), H521-H529. doi:10.1152/ajpheart.00458.2017
Wright, P. T., Nikolaev, V. O., O’Hara, T., Diakonov, I., Bhargava, A., Tokar, S., … Gorelik, J. (2014). Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 67, 38-48. doi:10.1016/j.yjmcc.2013.12.003
Surdo, N. C., Berrera, M., Koschinski, A., Brescia, M., Machado, M. R., Carr, C., … Zaccolo, M. (2017). FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications, 8(1). doi:10.1038/ncomms15031
Neumann, J., Eschenhagen, T., Jones, L. R., Linck, B., Schmitz, W., Scholz, H., & Zimmermann, N. (1997). Increased Expression of Cardiac Phosphatases in Patients with End-stage Heart Failure. Journal of Molecular and Cellular Cardiology, 29(1), 265-272. doi:10.1006/jmcc.1996.0271
El-Armouche, A. (2004). Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovascular Research, 61(1), 87-93. doi:10.1016/j.cardiores.2003.11.005
MacDougall, D. A., Agarwal, S. R., Stopford, E. A., Chu, H., Collins, J. A., Longster, A. L., … Calaghan, S. (2012). Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. Journal of Molecular and Cellular Cardiology, 52(2), 388-400. doi:10.1016/j.yjmcc.2011.06.014
Calaghan, S., Kozera, L., & White, E. (2008). Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. Journal of Molecular and Cellular Cardiology, 45(1), 88-92. doi:10.1016/j.yjmcc.2008.04.004
Akar, F. G., & Rosenbaum, D. S. (2003). Transmural Electrophysiological Heterogeneities Underlying Arrhythmogenesis in Heart Failure. Circulation Research, 93(7), 638-645. doi:10.1161/01.res.0000092248.59479.ae
Antzelevitch, C. (2007). Heterogeneity and cardiac arrhythmias: An overview. Heart Rhythm, 4(7), 964-972. doi:10.1016/j.hrthm.2007.03.036
Briasoulis, A., Palla, M., & Afonso, L. (2015). Meta-Analysis of the Effects of Carvedilol Versus Metoprolol on All-Cause Mortality and Hospitalizations in Patients With Heart Failure. The American Journal of Cardiology, 115(8), 1111-1115. doi:10.1016/j.amjcard.2015.01.545
Shen, M. J., & Zipes, D. P. (2014). Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circulation Research, 114(6), 1004-1021. doi:10.1161/circresaha.113.302549
Grandi, E., & Ripplinger, C. M. (2019). Antiarrhythmic mechanisms of beta blocker therapy. Pharmacological Research, 146, 104274. doi:10.1016/j.phrs.2019.104274
Nasr, I. A., Bouzamondo, A., Hulot, J.-S., Dubourg, O., Le Heuzey, J.-Y., & Lechat, P. (2007). Prevention of atrial fibrillation onset by beta-blocker treatment in heart failure: a meta-analysis. European Heart Journal, 28(4), 457-462. doi:10.1093/eurheartj/ehl484
Tomek, J., Hao, G., Tomková, M., Lewis, A., Carr, C., Paterson, D. J., … Herring, N. (2019). β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Frontiers in Physiology, 10. doi:10.3389/fphys.2019.00350
Vinge, L. E., Raake, P. W., & Koch, W. J. (2008). Gene Therapy in Heart Failure. Circulation Research, 102(12), 1458-1470. doi:10.1161/circresaha.108.173195
Engelhardt, S., Hein, L., Wiesmann, F., & Lohse, M. J. (1999). Progressive hypertrophy and heart failure in 1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences, 96(12), 7059-7064. doi:10.1073/pnas.96.12.7059
Rengo, G., Perrone-Filardi, P., Femminella, G. D., Liccardo, D., Zincarelli, C., de Lucia, C., … Leosco, D. (2012). Targeting the β-Adrenergic Receptor System Through G-Protein–Coupled Receptor Kinase 2: A New Paradigm for Therapy and Prognostic Evaluation in Heart Failure. Circulation: Heart Failure, 5(3), 385-391. doi:10.1161/circheartfailure.112.966895
Xiang, Y. K. (2011). Compartmentalization of β-Adrenergic Signals in Cardiomyocytes. Circulation Research, 109(2), 231-244. doi:10.1161/circresaha.110.231340
Momose, M., Tyndale-Hines, L., Bengel, F. M., & Schwaiger, M. (2001). How heterogeneous is the cardiac autonomic innervation? Basic Research in Cardiology, 96(6), 539-546. doi:10.1007/s003950170004
[-]