- -

Numerical solutions of random mean square Fisher-KPP models with advection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical solutions of random mean square Fisher-KPP models with advection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casabán Bartual, Mª Consuelo es_ES
dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2021-03-05T04:32:46Z
dc.date.available 2021-03-05T04:32:46Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163197
dc.description.abstract [EN] This paper deals with the construction of numerical stable solutions of random mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known. es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational methods for stochastic equations es_ES
dc.subject Exponential time differencing es_ES
dc.subject Mean square random calculus es_ES
dc.subject Partial differential equations with randomness es_ES
dc.subject Random Fisher-KPP equation es_ES
dc.subject Semidiscretization es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Numerical solutions of random mean square Fisher-KPP models with advection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5942 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Casabán Bartual, MC.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Numerical solutions of random mean square Fisher-KPP models with advection. Mathematical Methods in the Applied Sciences. 43(14):8015-8031. https://doi.org/10.1002/mma.5942 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5942 es_ES
dc.description.upvformatpinicio 8015 es_ES
dc.description.upvformatpfin 8031 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\416970 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.x es_ES
dc.description.references Bengfort, M., Malchow, H., & Hilker, F. M. (2016). The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments. Journal of Mathematical Biology, 73(3), 683-704. doi:10.1007/s00285-016-0966-8 es_ES
dc.description.references Okubo, A., & Levin, S. A. (2001). Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics. doi:10.1007/978-1-4757-4978-6 es_ES
dc.description.references SKELLAM, J. G. (1951). RANDOM DISPERSAL IN THEORETICAL POPULATIONS. Biometrika, 38(1-2), 196-218. doi:10.1093/biomet/38.1-2.196 es_ES
dc.description.references Aronson, D. G., & Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics, 5-49. doi:10.1007/bfb0070595 es_ES
dc.description.references Aronson, D. ., & Weinberger, H. . (1978). Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics, 30(1), 33-76. doi:10.1016/0001-8708(78)90130-5 es_ES
dc.description.references Weinberger, H. F. (2002). On spreading speeds and traveling waves for growth and migration models in a periodic habitat. Journal of Mathematical Biology, 45(6), 511-548. doi:10.1007/s00285-002-0169-3 es_ES
dc.description.references Weinberger, H. F., Lewis, M. A., & Li, B. (2007). Anomalous spreading speeds of cooperative recursion systems. Journal of Mathematical Biology, 55(2), 207-222. doi:10.1007/s00285-007-0078-6 es_ES
dc.description.references Liang, X., & Zhao, X.-Q. (2006). Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Communications on Pure and Applied Mathematics, 60(1), 1-40. doi:10.1002/cpa.20154 es_ES
dc.description.references E. Fitzgibbon, W., Parrott, M. E., & Webb, G. (1995). Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1(1), 35-57. doi:10.3934/dcds.1995.1.35 es_ES
dc.description.references Kinezaki, N., Kawasaki, K., & Shigesada, N. (2006). Spatial dynamics of invasion in sinusoidally varying environments. Population Ecology, 48(4), 263-270. doi:10.1007/s10144-006-0263-2 es_ES
dc.description.references Jin, Y., Hilker, F. M., Steffler, P. M., & Lewis, M. A. (2014). Seasonal Invasion Dynamics in a Spatially Heterogeneous River with Fluctuating Flows. Bulletin of Mathematical Biology, 76(7), 1522-1565. doi:10.1007/s11538-014-9957-3 es_ES
dc.description.references Faou, E. (2009). Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Mathematics of Computation, 78(267), 1467-1483. doi:10.1090/s0025-5718-08-02185-6 es_ES
dc.description.references Doering, C. R., Mueller, C., & Smereka, P. (2003). Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A: Statistical Mechanics and its Applications, 325(1-2), 243-259. doi:10.1016/s0378-4371(03)00203-6 es_ES
dc.description.references Siekmann, I., Bengfort, M., & Malchow, H. (2017). Coexistence of competitors mediated by nonlinear noise. The European Physical Journal Special Topics, 226(9), 2157-2170. doi:10.1140/epjst/e2017-70038-6 es_ES
dc.description.references McKean, H. P. (1975). Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov. Communications on Pure and Applied Mathematics, 28(3), 323-331. doi:10.1002/cpa.3160280302 es_ES
dc.description.references Berestycki, H., & Nadin, G. (2012). Spreading speeds for one-dimensional monostable reaction-diffusion equations. Journal of Mathematical Physics, 53(11), 115619. doi:10.1063/1.4764932 es_ES
dc.description.references Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020 es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017 es_ES
dc.description.references Sarmin, E. N., & Chudov, L. A. (1963). On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method. USSR Computational Mathematics and Mathematical Physics, 3(6), 1537-1543. doi:10.1016/0041-5553(63)90256-8 es_ES
dc.description.references Sanz-Serna, J. M., & Verwer, J. G. (1989). Convergence analysis of one-step schemes in the method of lines. Applied Mathematics and Computation, 31, 183-196. doi:10.1016/0096-3003(89)90118-5 es_ES
dc.description.references Calvo, M. P., de Frutos, J., & Novo, J. (2001). Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Applied Numerical Mathematics, 37(4), 535-549. doi:10.1016/s0168-9274(00)00061-1 es_ES
dc.description.references Cox, S. M., & Matthews, P. C. (2002). Exponential Time Differencing for Stiff Systems. Journal of Computational Physics, 176(2), 430-455. doi:10.1006/jcph.2002.6995 es_ES
dc.description.references De la Hoz, F., & Vadillo, F. (2016). Numerical simulations of time-dependent partial differential equations. Journal of Computational and Applied Mathematics, 295, 175-184. doi:10.1016/j.cam.2014.10.006 es_ES
dc.description.references Company, R., Egorova, V. N., & Jódar, L. (2018). Conditional full stability of positivity-preserving finite difference scheme for diffusion–advection-reaction models. Journal of Computational and Applied Mathematics, 341, 157-168. doi:10.1016/j.cam.2018.02.031 es_ES
dc.description.references Kaczorek, T. (2002). Positive 1D and 2D Systems. Communications and Control Engineering. doi:10.1007/978-1-4471-0221-2 es_ES
dc.description.references Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-5561-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem