Mostrar el registro sencillo del ítem
dc.contributor.author | Casabán Bartual, Mª Consuelo | es_ES |
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2021-03-05T04:32:46Z | |
dc.date.available | 2021-03-05T04:32:46Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163197 | |
dc.description.abstract | [EN] This paper deals with the construction of numerical stable solutions of random mean square Fisher-Kolmogorov-Petrosky-Piskunov (Fisher-KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computational methods for stochastic equations | es_ES |
dc.subject | Exponential time differencing | es_ES |
dc.subject | Mean square random calculus | es_ES |
dc.subject | Partial differential equations with randomness | es_ES |
dc.subject | Random Fisher-KPP equation | es_ES |
dc.subject | Semidiscretization | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerical solutions of random mean square Fisher-KPP models with advection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5942 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Casabán Bartual, MC.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Numerical solutions of random mean square Fisher-KPP models with advection. Mathematical Methods in the Applied Sciences. 43(14):8015-8031. https://doi.org/10.1002/mma.5942 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5942 | es_ES |
dc.description.upvformatpinicio | 8015 | es_ES |
dc.description.upvformatpfin | 8031 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\416970 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.x | es_ES |
dc.description.references | Bengfort, M., Malchow, H., & Hilker, F. M. (2016). The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments. Journal of Mathematical Biology, 73(3), 683-704. doi:10.1007/s00285-016-0966-8 | es_ES |
dc.description.references | Okubo, A., & Levin, S. A. (2001). Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics. doi:10.1007/978-1-4757-4978-6 | es_ES |
dc.description.references | SKELLAM, J. G. (1951). RANDOM DISPERSAL IN THEORETICAL POPULATIONS. Biometrika, 38(1-2), 196-218. doi:10.1093/biomet/38.1-2.196 | es_ES |
dc.description.references | Aronson, D. G., & Weinberger, H. F. (1975). Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics, 5-49. doi:10.1007/bfb0070595 | es_ES |
dc.description.references | Aronson, D. ., & Weinberger, H. . (1978). Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics, 30(1), 33-76. doi:10.1016/0001-8708(78)90130-5 | es_ES |
dc.description.references | Weinberger, H. F. (2002). On spreading speeds and traveling waves for growth and migration models in a periodic habitat. Journal of Mathematical Biology, 45(6), 511-548. doi:10.1007/s00285-002-0169-3 | es_ES |
dc.description.references | Weinberger, H. F., Lewis, M. A., & Li, B. (2007). Anomalous spreading speeds of cooperative recursion systems. Journal of Mathematical Biology, 55(2), 207-222. doi:10.1007/s00285-007-0078-6 | es_ES |
dc.description.references | Liang, X., & Zhao, X.-Q. (2006). Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Communications on Pure and Applied Mathematics, 60(1), 1-40. doi:10.1002/cpa.20154 | es_ES |
dc.description.references | E. Fitzgibbon, W., Parrott, M. E., & Webb, G. (1995). Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1(1), 35-57. doi:10.3934/dcds.1995.1.35 | es_ES |
dc.description.references | Kinezaki, N., Kawasaki, K., & Shigesada, N. (2006). Spatial dynamics of invasion in sinusoidally varying environments. Population Ecology, 48(4), 263-270. doi:10.1007/s10144-006-0263-2 | es_ES |
dc.description.references | Jin, Y., Hilker, F. M., Steffler, P. M., & Lewis, M. A. (2014). Seasonal Invasion Dynamics in a Spatially Heterogeneous River with Fluctuating Flows. Bulletin of Mathematical Biology, 76(7), 1522-1565. doi:10.1007/s11538-014-9957-3 | es_ES |
dc.description.references | Faou, E. (2009). Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Mathematics of Computation, 78(267), 1467-1483. doi:10.1090/s0025-5718-08-02185-6 | es_ES |
dc.description.references | Doering, C. R., Mueller, C., & Smereka, P. (2003). Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A: Statistical Mechanics and its Applications, 325(1-2), 243-259. doi:10.1016/s0378-4371(03)00203-6 | es_ES |
dc.description.references | Siekmann, I., Bengfort, M., & Malchow, H. (2017). Coexistence of competitors mediated by nonlinear noise. The European Physical Journal Special Topics, 226(9), 2157-2170. doi:10.1140/epjst/e2017-70038-6 | es_ES |
dc.description.references | McKean, H. P. (1975). Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov. Communications on Pure and Applied Mathematics, 28(3), 323-331. doi:10.1002/cpa.3160280302 | es_ES |
dc.description.references | Berestycki, H., & Nadin, G. (2012). Spreading speeds for one-dimensional monostable reaction-diffusion equations. Journal of Mathematical Physics, 53(11), 115619. doi:10.1063/1.4764932 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving linear and quadratic random matrix differential equations: A mean square approach. Applied Mathematical Modelling, 40(21-22), 9362-9377. doi:10.1016/j.apm.2016.06.017 | es_ES |
dc.description.references | Sarmin, E. N., & Chudov, L. A. (1963). On the stability of the numerical integration of systems of ordinary differential equations arising in the use of the straight line method. USSR Computational Mathematics and Mathematical Physics, 3(6), 1537-1543. doi:10.1016/0041-5553(63)90256-8 | es_ES |
dc.description.references | Sanz-Serna, J. M., & Verwer, J. G. (1989). Convergence analysis of one-step schemes in the method of lines. Applied Mathematics and Computation, 31, 183-196. doi:10.1016/0096-3003(89)90118-5 | es_ES |
dc.description.references | Calvo, M. P., de Frutos, J., & Novo, J. (2001). Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Applied Numerical Mathematics, 37(4), 535-549. doi:10.1016/s0168-9274(00)00061-1 | es_ES |
dc.description.references | Cox, S. M., & Matthews, P. C. (2002). Exponential Time Differencing for Stiff Systems. Journal of Computational Physics, 176(2), 430-455. doi:10.1006/jcph.2002.6995 | es_ES |
dc.description.references | De la Hoz, F., & Vadillo, F. (2016). Numerical simulations of time-dependent partial differential equations. Journal of Computational and Applied Mathematics, 295, 175-184. doi:10.1016/j.cam.2014.10.006 | es_ES |
dc.description.references | Company, R., Egorova, V. N., & Jódar, L. (2018). Conditional full stability of positivity-preserving finite difference scheme for diffusion–advection-reaction models. Journal of Computational and Applied Mathematics, 341, 157-168. doi:10.1016/j.cam.2018.02.031 | es_ES |
dc.description.references | Kaczorek, T. (2002). Positive 1D and 2D Systems. Communications and Control Engineering. doi:10.1007/978-1-4471-0221-2 | es_ES |
dc.description.references | Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-5561-1 | es_ES |