- -

Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Gaona, Yuliana es_ES
dc.contributor.author Rodríguez Álvarez, María José es_ES
dc.contributor.author Lakshminarayanan, Vasudevan es_ES
dc.date.accessioned 2021-03-05T04:32:58Z
dc.date.available 2021-03-05T04:32:58Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163199
dc.description.abstract [EN] This paper provides a critical review of the literature on deep learning applications in breast tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists. This review is based upon published literature in the past decade (January 2010-January 2020), where we obtained around 250 research articles, and after an eligibility process, 59 articles were presented in more detail. The main findings in the classification process revealed that new DL-CAD methods are useful and effective screening tools for breast cancer, thus reducing the need for manual feature extraction. The breast tumor research community can utilize this survey as a basis for their current and future studies. es_ES
dc.description.sponsorship This project has been co-financed by the Spanish Government Grant PID2019-107790RB-C22, "Software development for a continuous PET crystal systems applied to breast cancer". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Breast cancer es_ES
dc.subject Computer-aided diagnosis es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject Mammography es_ES
dc.subject Ultrasound es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10228298 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Jiménez-Gaona, Y.; Rodríguez Álvarez, MJ.; Lakshminarayanan, V. (2020). Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences. 10(22):1-29. https://doi.org/10.3390/app10228298 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10228298 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\422203 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69-90. doi:10.3322/caac.20107 es_ES
dc.description.references Gao, F., Chia, K.-S., Ng, F.-C., Ng, E.-H., & Machin, D. (2002). Interval cancers following breast cancer screening in Singaporean women. International Journal of Cancer, 101(5), 475-479. doi:10.1002/ijc.10636 es_ES
dc.description.references Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers, 11(9), 1235. doi:10.3390/cancers11091235 es_ES
dc.description.references Nahid, A.-A., & Kong, Y. (2017). Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Computational and Mathematical Methods in Medicine, 2017, 1-29. doi:10.1155/2017/3781951 es_ES
dc.description.references Ramadan, S. Z. (2020). Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. Journal of Healthcare Engineering, 2020, 1-21. doi:10.1155/2020/9162464 es_ES
dc.description.references CHAN, H.-P., DOI, K., VYBRONY, C. J., SCHMIDT, R. A., METZ, C. E., LAM, K. L., … MACMAHON, H. (1990). Improvement in Radiologists?? Detection of Clustered Microcalcifications on Mammograms. Investigative Radiology, 25(10), 1102-1110. doi:10.1097/00004424-199010000-00006 es_ES
dc.description.references Olsen, O., & Gøtzsche, P. C. (2001). Cochrane review on screening for breast cancer with mammography. The Lancet, 358(9290), 1340-1342. doi:10.1016/s0140-6736(01)06449-2 es_ES
dc.description.references Mann, R. M., Kuhl, C. K., Kinkel, K., & Boetes, C. (2008). Breast MRI: guidelines from the European Society of Breast Imaging. European Radiology, 18(7), 1307-1318. doi:10.1007/s00330-008-0863-7 es_ES
dc.description.references Jalalian, A., Mashohor, S. B. T., Mahmud, H. R., Saripan, M. I. B., Ramli, A. R. B., & Karasfi, B. (2013). Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical Imaging, 37(3), 420-426. doi:10.1016/j.clinimag.2012.09.024 es_ES
dc.description.references Sarno, A., Mettivier, G., & Russo, P. (2015). Dedicated breast computed tomography: Basic aspects. Medical Physics, 42(6Part1), 2786-2804. doi:10.1118/1.4919441 es_ES
dc.description.references Njor, S., Nyström, L., Moss, S., Paci, E., Broeders, M., Segnan, N., & Lynge, E. (2012). Breast Cancer Mortality in Mammographic Screening in Europe: A Review of Incidence-Based Mortality Studies. Journal of Medical Screening, 19(1_suppl), 33-41. doi:10.1258/jms.2012.012080 es_ES
dc.description.references Morrell, S., Taylor, R., Roder, D., & Dobson, A. (2012). Mammography screening and breast cancer mortality in Australia: an aggregate cohort study. Journal of Medical Screening, 19(1), 26-34. doi:10.1258/jms.2012.011127 es_ES
dc.description.references Marmot, M. G., Altman, D. G., Cameron, D. A., Dewar, J. A., Thompson, S. G., & Wilcox, M. (2013). The benefits and harms of breast cancer screening: an independent review. British Journal of Cancer, 108(11), 2205-2240. doi:10.1038/bjc.2013.177 es_ES
dc.description.references Pisano, E. D., Gatsonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., … Rebner, M. (2005). Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. New England Journal of Medicine, 353(17), 1773-1783. doi:10.1056/nejmoa052911 es_ES
dc.description.references Carney, P. A., Miglioretti, D. L., Yankaskas, B. C., Kerlikowske, K., Rosenberg, R., Rutter, C. M., … Ballard-Barbash, R. (2003). Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Annals of Internal Medicine, 138(3), 168. doi:10.7326/0003-4819-138-3-200302040-00008 es_ES
dc.description.references Woodard, D. B., Gelfand, A. E., Barlow, W. E., & Elmore, J. G. (2007). Performance assessment for radiologists interpreting screening mammography. Statistics in Medicine, 26(7), 1532-1551. doi:10.1002/sim.2633 es_ES
dc.description.references Cole, E. B., Pisano, E. D., Kistner, E. O., Muller, K. E., Brown, M. E., Feig, S. A., … Braeuning, M. P. (2003). Diagnostic Accuracy of Digital Mammography in Patients with Dense Breasts Who Underwent Problem-solving Mammography: Effects of Image Processing and Lesion Type. Radiology, 226(1), 153-160. doi:10.1148/radiol.2261012024 es_ES
dc.description.references Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., … Yaffe, M. J. (2007). Mammographic Density and the Risk and Detection of Breast Cancer. New England Journal of Medicine, 356(3), 227-236. doi:10.1056/nejmoa062790 es_ES
dc.description.references Bird, R. E., Wallace, T. W., & Yankaskas, B. C. (1992). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613-617. doi:10.1148/radiology.184.3.1509041 es_ES
dc.description.references Kerlikowske, K. (2000). Performance of Screening Mammography among Women with and without a First-Degree Relative with Breast Cancer. Annals of Internal Medicine, 133(11), 855. doi:10.7326/0003-4819-133-11-200012050-00009 es_ES
dc.description.references Nunes, F. L. S., Schiabel, H., & Goes, C. E. (2006). Contrast Enhancement in Dense Breast Images to Aid Clustered Microcalcifications Detection. Journal of Digital Imaging, 20(1), 53-66. doi:10.1007/s10278-005-6976-5 es_ES
dc.description.references Dinnes, J., Moss, S., Melia, J., Blanks, R., Song, F., & Kleijnen, J. (2001). Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. The Breast, 10(6), 455-463. doi:10.1054/brst.2001.0350 es_ES
dc.description.references Robinson, P. J. (1997). Radiology’s Achilles’ heel: error and variation in the interpretation of the Röntgen image. The British Journal of Radiology, 70(839), 1085-1098. doi:10.1259/bjr.70.839.9536897 es_ES
dc.description.references Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003 es_ES
dc.description.references Vyborny, C. J., Giger, M. L., & Nishikawa, R. M. (2000). COMPUTER-AIDED DETECTION AND DIAGNOSIS OF BREAST CANCER. Radiologic Clinics of North America, 38(4), 725-740. doi:10.1016/s0033-8389(05)70197-4 es_ES
dc.description.references Giger, M. L. (2018). Machine Learning in Medical Imaging. Journal of the American College of Radiology, 15(3), 512-520. doi:10.1016/j.jacr.2017.12.028 es_ES
dc.description.references Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., & Carson, P. L. (2019). Medical breast ultrasound image segmentation by machine learning. Ultrasonics, 91, 1-9. doi:10.1016/j.ultras.2018.07.006 es_ES
dc.description.references Shan, J., Alam, S. K., Garra, B., Zhang, Y., & Ahmed, T. (2016). Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Ultrasound in Medicine & Biology, 42(4), 980-988. doi:10.1016/j.ultrasmedbio.2015.11.016 es_ES
dc.description.references Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., & Zheng, H. (2016). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 72, 150-157. doi:10.1016/j.ultras.2016.08.004 es_ES
dc.description.references Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., … Chen, C.-M. (2016). Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6(1). doi:10.1038/srep24454 es_ES
dc.description.references Shin, S. Y., Lee, S., Yun, I. D., Kim, S. M., & Lee, K. M. (2019). Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Transactions on Medical Imaging, 38(3), 762-774. doi:10.1109/tmi.2018.2872031 es_ES
dc.description.references Wang, J., Ding, H., Bidgoli, F. A., Zhou, B., Iribarren, C., Molloi, S., & Baldi, P. (2017). Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(5), 1172-1181. doi:10.1109/tmi.2017.2655486 es_ES
dc.description.references Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., … Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303-312. doi:10.1016/j.media.2016.07.007 es_ES
dc.description.references Debelee, T. G., Schwenker, F., Ibenthal, A., & Yohannes, D. (2019). Survey of deep learning in breast cancer image analysis. Evolving Systems, 11(1), 143-163. doi:10.1007/s12530-019-09297-2 es_ES
dc.description.references Keen, J. D., Keen, J. M., & Keen, J. E. (2018). Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016. Journal of the American College of Radiology, 15(1), 44-48. doi:10.1016/j.jacr.2017.08.033 es_ES
dc.description.references Henriksen, E. L., Carlsen, J. F., Vejborg, I. M., Nielsen, M. B., & Lauridsen, C. A. (2018). The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiologica, 60(1), 13-18. doi:10.1177/0284185118770917 es_ES
dc.description.references Gao, Y., Geras, K. J., Lewin, A. A., & Moy, L. (2019). New Frontiers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Artificial Intelligence. American Journal of Roentgenology, 212(2), 300-307. doi:10.2214/ajr.18.20392 es_ES
dc.description.references Pacilè, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., & Fillard, P. (2020). Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiology: Artificial Intelligence, 2(6), e190208. doi:10.1148/ryai.2020190208 es_ES
dc.description.references Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. doi:10.1117/1.jmi.3.3.034501 es_ES
dc.description.references Yap, M. H., Pons, G., Marti, J., Ganau, S., Sentis, M., Zwiggelaar, R., … Marti, R. (2018). Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(4), 1218-1226. doi:10.1109/jbhi.2017.2731873 es_ES
dc.description.references Moon, W. K., Lee, Y.-W., Ke, H.-H., Lee, S. H., Huang, C.-S., & Chang, R.-F. (2020). Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Computer Methods and Programs in Biomedicine, 190, 105361. doi:10.1016/j.cmpb.2020.105361 es_ES
dc.description.references LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 es_ES
dc.description.references Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044 es_ES
dc.description.references Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., … Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285-1298. doi:10.1109/tmi.2016.2528162 es_ES
dc.description.references Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570. doi:10.3348/kjr.2017.18.4.570 es_ES
dc.description.references Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. doi:10.1007/s12194-017-0406-5 es_ES
dc.description.references Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. doi:10.1016/j.ijsu.2010.02.007 es_ES
dc.description.references Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five Steps to Conducting a Systematic Review. Journal of the Royal Society of Medicine, 96(3), 118-121. doi:10.1177/014107680309600304 es_ES
dc.description.references Han, S., Kang, H.-K., Jeong, J.-Y., Park, M.-H., Kim, W., Bang, W.-C., & Seong, Y.-K. (2017). A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology, 62(19), 7714-7728. doi:10.1088/1361-6560/aa82ec es_ES
dc.description.references Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. doi:10.1016/j.acra.2011.09.014 es_ES
dc.description.references Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, 20(S11). doi:10.1186/s12859-019-2823-4 es_ES
dc.description.references Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson, L., … Andre, M. (2020). Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 61, 102027. doi:10.1016/j.bspc.2020.102027 es_ES
dc.description.references Jiao, Z., Gao, X., Wang, Y., & Li, J. (2016). A deep feature based framework for breast masses classification. Neurocomputing, 197, 221-231. doi:10.1016/j.neucom.2016.02.060 es_ES
dc.description.references Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Guevara Lopez, M. A. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 127, 248-257. doi:10.1016/j.cmpb.2015.12.014 es_ES
dc.description.references Peng, W., Mayorga, R. V., & Hussein, E. M. A. (2016). An automated confirmatory system for analysis of mammograms. Computer Methods and Programs in Biomedicine, 125, 134-144. doi:10.1016/j.cmpb.2015.09.019 es_ES
dc.description.references Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi:10.1016/j.dib.2019.104863 es_ES
dc.description.references Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., & Nowicki, A. (2017). Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Medical Physics, 44(11), 6105-6109. doi:10.1002/mp.12538 es_ES
dc.description.references Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 13(1), 6-19. doi:10.1007/s12194-019-00552-4 es_ES
dc.description.references Sengupta, S., Singh, A., Leopold, H. A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 102, 101758. doi:10.1016/j.artmed.2019.101758 es_ES
dc.description.references Ganesan, K., Acharya, U. R., Chua, K. C., Min, L. C., & Abraham, K. T. (2013). Pectoral muscle segmentation: A review. Computer Methods and Programs in Biomedicine, 110(1), 48-57. doi:10.1016/j.cmpb.2012.10.020 es_ES
dc.description.references Huang, Q., Luo, Y., & Zhang, Q. (2017). Breast ultrasound image segmentation: a survey. International Journal of Computer Assisted Radiology and Surgery, 12(3), 493-507. doi:10.1007/s11548-016-1513-1 es_ES
dc.description.references Noble, J. A., & Boukerroui, D. (2006). Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging, 25(8), 987-1010. doi:10.1109/tmi.2006.877092 es_ES
dc.description.references Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. Computerized Medical Imaging and Graphics, 16(5), 323-331. doi:10.1016/0895-6111(92)90145-y es_ES
dc.description.references Tsantis, S., Dimitropoulos, N., Cavouras, D., & Nikiforidis, G. (2006). A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Computer Methods and Programs in Biomedicine, 84(2-3), 86-98. doi:10.1016/j.cmpb.2006.09.006 es_ES
dc.description.references Ilesanmi, A. E., Idowu, O. P., & Makhanov, S. S. (2020). Multiscale superpixel method for segmentation of breast ultrasound. Computers in Biology and Medicine, 125, 103879. doi:10.1016/j.compbiomed.2020.103879 es_ES
dc.description.references Chen, D.-R., Chang, R.-F., Kuo, W.-J., Chen, M.-C., & Huang, Y. .-L. (2002). Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound in Medicine & Biology, 28(10), 1301-1310. doi:10.1016/s0301-5629(02)00620-8 es_ES
dc.description.references Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299-317. doi:10.1016/j.patcog.2009.05.012 es_ES
dc.description.references Chan, H.-P., Wei, D., Helvie, M. A., Sahiner, B., Adler, D. D., Goodsitt, M. M., & Petrick, N. (1995). Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology, 40(5), 857-876. doi:10.1088/0031-9155/40/5/010 es_ES
dc.description.references Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., & Tanaka, M. (2007). Pattern Classification of Nevus with Texture Analysis. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 143-150. doi:10.1002/tee.20246 es_ES
dc.description.references Singh, B., Jain, V. K., & Singh, S. (2014). Mammogram Mass Classification Using Support Vector Machine with Texture, Shape Features and Hierarchical Centroid Method. Journal of Medical Imaging and Health Informatics, 4(5), 687-696. doi:10.1166/jmihi.2014.1312 es_ES
dc.description.references Pal, N. R., Bhowmick, B., Patel, S. K., Pal, S., & Das, J. (2008). A multi-stage neural network aided system for detection of microcalcifications in digitized mammograms. Neurocomputing, 71(13-15), 2625-2634. doi:10.1016/j.neucom.2007.06.015 es_ES
dc.description.references Ayer, T., Chen, Q., & Burnside, E. S. (2013). Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making. Computational and Mathematical Methods in Medicine, 2013, 1-10. doi:10.1155/2013/832509 es_ES
dc.description.references Sumbaly, R., Vishnusri, N., & Jeyalatha, S. (2014). Diagnosis of Breast Cancer using Decision Tree Data Mining Technique. International Journal of Computer Applications, 98(10), 16-24. doi:10.5120/17219-7456 es_ES
dc.description.references Landwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Trees. Machine Learning, 59(1-2), 161-205. doi:10.1007/s10994-005-0466-3 es_ES
dc.description.references Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139-144. doi:10.1016/j.eswa.2015.10.015 es_ES
dc.description.references Nishikawa, R. M., Giger, M. L., Doi, K., Metz, C. E., Yin, F.-F., Vyborny, C. J., & Schmidt, R. A. (1994). Effect of case selection on the performance of computer-aided detection schemes. Medical Physics, 21(2), 265-269. doi:10.1118/1.597287 es_ES
dc.description.references Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine & Biology, 44(1), 37-70. doi:10.1016/j.ultrasmedbio.2017.09.012 es_ES
dc.description.references Kang, C.-C., Wang, W.-J., & Kang, C.-H. (2012). Image segmentation with complicated background by using seeded region growing. AEU - International Journal of Electronics and Communications, 66(9), 767-771. doi:10.1016/j.aeue.2012.01.011 es_ES
dc.description.references Prabusankarlal, K. M., Thirumoorthy, P., & Manavalan, R. (2014). Computer Aided Breast Cancer Diagnosis Techniques in Ultrasound: A Survey. Journal of Medical Imaging and Health Informatics, 4(3), 331-349. doi:10.1166/jmihi.2014.1269 es_ES
dc.description.references Abdallah, Y. M., Elgak, S., Zain, H., Rafiq, M., A. Ebaid, E., & A. Elnaema, A. (2018). Breast cancer detection using image enhancement and segmentation algorithms. Biomedical Research, 29(20). doi:10.4066/biomedicalresearch.29-18-1106 es_ES
dc.description.references K.U, S., & S, G. R. (2016). Objective Quality Assessment of Image Enhancement Methods in Digital Mammography - A Comparative Study. Signal & Image Processing : An International Journal, 7(4), 01-13. doi:10.5121/sipij.2016.7401 es_ES
dc.description.references Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., … Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355-368. doi:10.1016/s0734-189x(87)80186-x es_ES
dc.description.references Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., … Pizer, S. M. (1998). Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193-200. doi:10.1007/bf03178082 es_ES
dc.description.references Wan, J., Yin, H., Chong, A.-X., & Liu, Z.-H. (2020). Progressive residual networks for image super-resolution. Applied Intelligence, 50(5), 1620-1632. doi:10.1007/s10489-019-01548-8 es_ES
dc.description.references Umehara, K., Ota, J., & Ishida, T. (2017). Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open Journal of Medical Imaging, 07(04), 180-195. doi:10.4236/ojmi.2017.74018 es_ES
dc.description.references Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281 es_ES
dc.description.references Jiang, Y., & Li, J. (2020). Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. Applied Sciences, 10(5), 1729. doi:10.3390/app10051729 es_ES
dc.description.references Schultz, R. R., & Stevenson, R. L. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233-242. doi:10.1109/83.287017 es_ES
dc.description.references Lei Zhang, & Xiaolin Wu. (2006). An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238. doi:10.1109/tip.2006.877407 es_ES
dc.description.references Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0197-0 es_ES
dc.description.references Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1). doi:10.1186/s40537-016-0043-6 es_ES
dc.description.references Ling Shao, Fan Zhu, & Xuelong Li. (2015). Transfer Learning for Visual Categorization: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 1019-1034. doi:10.1109/tnnls.2014.2330900 es_ES
dc.description.references Gatys, L., Ecker, A., & Bethge, M. (2016). A Neural Algorithm of Artistic Style. Journal of Vision, 16(12), 326. doi:10.1167/16.12.326 es_ES
dc.description.references Saeed, J. N. (2020). A SURVEY OF ULTRASONOGRAPHY BREAST CANCER IMAGE SEGMENTATION TECHNIQUES. Academic Journal of Nawroz University, 9(1), 1. doi:10.25007/ajnu.v9n1a523 es_ES
dc.description.references Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, T. (2019). Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review. Journal of Medical Internet Research, 21(7), e14464. doi:10.2196/14464 es_ES
dc.description.references Al-masni Mohammed A., Al-antari Mugahed A., Park, J.-M., Gi, G., Kim, T.-Y., Rivera, P., … Kim, T.-S. (2018). Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer Methods and Programs in Biomedicine, 157, 85-94. doi:10.1016/j.cmpb.2018.01.017 es_ES
dc.description.references Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. doi:10.1109/tpami.2016.2644615 es_ES
dc.description.references Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28 es_ES
dc.description.references Romera, E., Alvarez, J. M., Bergasa, L. M., & Arroyo, R. (2018). ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation. IEEE Transactions on Intelligent Transportation Systems, 19(1), 263-272. doi:10.1109/tits.2017.2750080 es_ES
dc.description.references Lee, C., & Landgrebe, D. A. (1993). Feature extraction based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4), 388-400. doi:10.1109/34.206958 es_ES
dc.description.references Cao, Z., Duan, L., Yang, G., Yue, T., & Chen, Q. (2019). An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Medical Imaging, 19(1). doi:10.1186/s12880-019-0349-x es_ES
dc.description.references Chiao, J.-Y., Chen, K.-Y., Liao, K. Y.-K., Hsieh, P.-H., Zhang, G., & Huang, T.-C. (2019). Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine, 98(19), e15200. doi:10.1097/md.0000000000015200 es_ES
dc.description.references Hu, F., Xia, G.-S., Hu, J., & Zhang, L. (2015). Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sensing, 7(11), 14680-14707. doi:10.3390/rs71114680 es_ES
dc.description.references Kooi, T., van Ginneken, B., Karssemeijer, N., & den Heeten, A. (2017). Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Medical Physics, 44(3), 1017-1027. doi:10.1002/mp.12110 es_ES
dc.description.references Chan, H.-P., Lo, S.-C. B., Sahiner, B., Lam, K. L., & Helvie, M. A. (1995). Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Medical Physics, 22(10), 1555-1567. doi:10.1118/1.597428 es_ES
dc.description.references Carneiro, G., Nascimento, J., & Bradley, A. P. (2017). Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(11), 2355-2365. doi:10.1109/tmi.2017.2751523 es_ES
dc.description.references Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 es_ES
dc.description.references Huynh, B., Drukker, K., & Giger, M. (2016). MO-DE-207B-06: Computer-Aided Diagnosis of Breast Ultrasound Images Using Transfer Learning From Deep Convolutional Neural Networks. Medical Physics, 43(6Part30), 3705-3705. doi:10.1118/1.4957255 es_ES
dc.description.references Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12(10), 1399-1404. doi:10.1016/s0893-6080(99)00073-8 es_ES
dc.description.references Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ, 7, e6201. doi:10.7717/peerj.6201 es_ES
dc.description.references Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y es_ES
dc.description.references Samala, R. K., Chan, H.-P., Hadjiiski, L., Helvie, M. A., Wei, J., & Cha, K. (2016). Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Medical Physics, 43(12), 6654-6666. doi:10.1118/1.4967345 es_ES
dc.description.references Dhungel, N., Carneiro, G., & Bradley, A. P. (2017). A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Medical Image Analysis, 37, 114-128. doi:10.1016/j.media.2017.01.009 es_ES
dc.description.references Breast Ultrasound Imagehttps://data.mendeley.com/datasets/wmy84gzngw/1 es_ES
dc.description.references Duggento, A., Aiello, M., Cavaliere, C., Cascella, G. L., Cascella, D., Conte, G., … Toschi, N. (2019). An Ad Hoc Random Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images. Contrast Media & Molecular Imaging, 2019, 1-9. doi:10.1155/2019/5982834 es_ES
dc.description.references Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19-30. doi:10.1016/j.cmpb.2018.01.011 es_ES
dc.description.references Dheeba, J., Albert Singh, N., & Tamil Selvi, S. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45-52. doi:10.1016/j.jbi.2014.01.010 es_ES
dc.description.references Trivizakis, E., Ioannidis, G., Melissianos, V., Papadakis, G., Tsatsakis, A., Spandidos, D., & Marias, K. (2019). A novel deep learning architecture outperforming ‘off‑the‑shelf’ transfer learning and feature‑based methods in the automated assessment of mammographic breast density. Oncology Reports. doi:10.3892/or.2019.7312 es_ES
dc.description.references Jadoon, M. M., Zhang, Q., Haq, I. U., Butt, S., & Jadoon, A. (2017). Three-Class Mammogram Classification Based on Descriptive CNN Features. BioMed Research International, 2017, 1-11. doi:10.1155/2017/3640901 es_ES
dc.description.references Gu, P., Lee, W.-M., Roubidoux, M. A., Yuan, J., Wang, X., & Carson, P. L. (2016). Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics, 65, 51-58. doi:10.1016/j.ultras.2015.10.023 es_ES
dc.description.references Singh, B. K., Verma, K., & Thoke, A. S. (2016). Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Systems with Applications, 66, 114-123. doi:10.1016/j.eswa.2016.09.006 es_ES
dc.description.references Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., & Wang, T. (2016). Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing, 194, 87-94. doi:10.1016/j.neucom.2016.01.074 es_ES
dc.description.references Zou, L., Yu, S., Meng, T., Zhang, Z., Liang, X., & Xie, Y. (2019). A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis. Computational and Mathematical Methods in Medicine, 2019, 1-16. doi:10.1155/2019/6509357 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem