Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez-Gaona, Yuliana | es_ES |
dc.contributor.author | Rodríguez Álvarez, María José | es_ES |
dc.contributor.author | Lakshminarayanan, Vasudevan | es_ES |
dc.date.accessioned | 2021-03-05T04:32:58Z | |
dc.date.available | 2021-03-05T04:32:58Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163199 | |
dc.description.abstract | [EN] This paper provides a critical review of the literature on deep learning applications in breast tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists. This review is based upon published literature in the past decade (January 2010-January 2020), where we obtained around 250 research articles, and after an eligibility process, 59 articles were presented in more detail. The main findings in the classification process revealed that new DL-CAD methods are useful and effective screening tools for breast cancer, thus reducing the need for manual feature extraction. The breast tumor research community can utilize this survey as a basis for their current and future studies. | es_ES |
dc.description.sponsorship | This project has been co-financed by the Spanish Government Grant PID2019-107790RB-C22, "Software development for a continuous PET crystal systems applied to breast cancer". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Breast cancer | es_ES |
dc.subject | Computer-aided diagnosis | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Mammography | es_ES |
dc.subject | Ultrasound | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10228298 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Jiménez-Gaona, Y.; Rodríguez Álvarez, MJ.; Lakshminarayanan, V. (2020). Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences. 10(22):1-29. https://doi.org/10.3390/app10228298 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10228298 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\422203 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69-90. doi:10.3322/caac.20107 | es_ES |
dc.description.references | Gao, F., Chia, K.-S., Ng, F.-C., Ng, E.-H., & Machin, D. (2002). Interval cancers following breast cancer screening in Singaporean women. International Journal of Cancer, 101(5), 475-479. doi:10.1002/ijc.10636 | es_ES |
dc.description.references | Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers, 11(9), 1235. doi:10.3390/cancers11091235 | es_ES |
dc.description.references | Nahid, A.-A., & Kong, Y. (2017). Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Computational and Mathematical Methods in Medicine, 2017, 1-29. doi:10.1155/2017/3781951 | es_ES |
dc.description.references | Ramadan, S. Z. (2020). Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. Journal of Healthcare Engineering, 2020, 1-21. doi:10.1155/2020/9162464 | es_ES |
dc.description.references | CHAN, H.-P., DOI, K., VYBRONY, C. J., SCHMIDT, R. A., METZ, C. E., LAM, K. L., … MACMAHON, H. (1990). Improvement in Radiologists?? Detection of Clustered Microcalcifications on Mammograms. Investigative Radiology, 25(10), 1102-1110. doi:10.1097/00004424-199010000-00006 | es_ES |
dc.description.references | Olsen, O., & Gøtzsche, P. C. (2001). Cochrane review on screening for breast cancer with mammography. The Lancet, 358(9290), 1340-1342. doi:10.1016/s0140-6736(01)06449-2 | es_ES |
dc.description.references | Mann, R. M., Kuhl, C. K., Kinkel, K., & Boetes, C. (2008). Breast MRI: guidelines from the European Society of Breast Imaging. European Radiology, 18(7), 1307-1318. doi:10.1007/s00330-008-0863-7 | es_ES |
dc.description.references | Jalalian, A., Mashohor, S. B. T., Mahmud, H. R., Saripan, M. I. B., Ramli, A. R. B., & Karasfi, B. (2013). Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical Imaging, 37(3), 420-426. doi:10.1016/j.clinimag.2012.09.024 | es_ES |
dc.description.references | Sarno, A., Mettivier, G., & Russo, P. (2015). Dedicated breast computed tomography: Basic aspects. Medical Physics, 42(6Part1), 2786-2804. doi:10.1118/1.4919441 | es_ES |
dc.description.references | Njor, S., Nyström, L., Moss, S., Paci, E., Broeders, M., Segnan, N., & Lynge, E. (2012). Breast Cancer Mortality in Mammographic Screening in Europe: A Review of Incidence-Based Mortality Studies. Journal of Medical Screening, 19(1_suppl), 33-41. doi:10.1258/jms.2012.012080 | es_ES |
dc.description.references | Morrell, S., Taylor, R., Roder, D., & Dobson, A. (2012). Mammography screening and breast cancer mortality in Australia: an aggregate cohort study. Journal of Medical Screening, 19(1), 26-34. doi:10.1258/jms.2012.011127 | es_ES |
dc.description.references | Marmot, M. G., Altman, D. G., Cameron, D. A., Dewar, J. A., Thompson, S. G., & Wilcox, M. (2013). The benefits and harms of breast cancer screening: an independent review. British Journal of Cancer, 108(11), 2205-2240. doi:10.1038/bjc.2013.177 | es_ES |
dc.description.references | Pisano, E. D., Gatsonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., … Rebner, M. (2005). Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. New England Journal of Medicine, 353(17), 1773-1783. doi:10.1056/nejmoa052911 | es_ES |
dc.description.references | Carney, P. A., Miglioretti, D. L., Yankaskas, B. C., Kerlikowske, K., Rosenberg, R., Rutter, C. M., … Ballard-Barbash, R. (2003). Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Annals of Internal Medicine, 138(3), 168. doi:10.7326/0003-4819-138-3-200302040-00008 | es_ES |
dc.description.references | Woodard, D. B., Gelfand, A. E., Barlow, W. E., & Elmore, J. G. (2007). Performance assessment for radiologists interpreting screening mammography. Statistics in Medicine, 26(7), 1532-1551. doi:10.1002/sim.2633 | es_ES |
dc.description.references | Cole, E. B., Pisano, E. D., Kistner, E. O., Muller, K. E., Brown, M. E., Feig, S. A., … Braeuning, M. P. (2003). Diagnostic Accuracy of Digital Mammography in Patients with Dense Breasts Who Underwent Problem-solving Mammography: Effects of Image Processing and Lesion Type. Radiology, 226(1), 153-160. doi:10.1148/radiol.2261012024 | es_ES |
dc.description.references | Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., … Yaffe, M. J. (2007). Mammographic Density and the Risk and Detection of Breast Cancer. New England Journal of Medicine, 356(3), 227-236. doi:10.1056/nejmoa062790 | es_ES |
dc.description.references | Bird, R. E., Wallace, T. W., & Yankaskas, B. C. (1992). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613-617. doi:10.1148/radiology.184.3.1509041 | es_ES |
dc.description.references | Kerlikowske, K. (2000). Performance of Screening Mammography among Women with and without a First-Degree Relative with Breast Cancer. Annals of Internal Medicine, 133(11), 855. doi:10.7326/0003-4819-133-11-200012050-00009 | es_ES |
dc.description.references | Nunes, F. L. S., Schiabel, H., & Goes, C. E. (2006). Contrast Enhancement in Dense Breast Images to Aid Clustered Microcalcifications Detection. Journal of Digital Imaging, 20(1), 53-66. doi:10.1007/s10278-005-6976-5 | es_ES |
dc.description.references | Dinnes, J., Moss, S., Melia, J., Blanks, R., Song, F., & Kleijnen, J. (2001). Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. The Breast, 10(6), 455-463. doi:10.1054/brst.2001.0350 | es_ES |
dc.description.references | Robinson, P. J. (1997). Radiology’s Achilles’ heel: error and variation in the interpretation of the Röntgen image. The British Journal of Radiology, 70(839), 1085-1098. doi:10.1259/bjr.70.839.9536897 | es_ES |
dc.description.references | Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003 | es_ES |
dc.description.references | Vyborny, C. J., Giger, M. L., & Nishikawa, R. M. (2000). COMPUTER-AIDED DETECTION AND DIAGNOSIS OF BREAST CANCER. Radiologic Clinics of North America, 38(4), 725-740. doi:10.1016/s0033-8389(05)70197-4 | es_ES |
dc.description.references | Giger, M. L. (2018). Machine Learning in Medical Imaging. Journal of the American College of Radiology, 15(3), 512-520. doi:10.1016/j.jacr.2017.12.028 | es_ES |
dc.description.references | Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., & Carson, P. L. (2019). Medical breast ultrasound image segmentation by machine learning. Ultrasonics, 91, 1-9. doi:10.1016/j.ultras.2018.07.006 | es_ES |
dc.description.references | Shan, J., Alam, S. K., Garra, B., Zhang, Y., & Ahmed, T. (2016). Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Ultrasound in Medicine & Biology, 42(4), 980-988. doi:10.1016/j.ultrasmedbio.2015.11.016 | es_ES |
dc.description.references | Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., & Zheng, H. (2016). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 72, 150-157. doi:10.1016/j.ultras.2016.08.004 | es_ES |
dc.description.references | Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., … Chen, C.-M. (2016). Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6(1). doi:10.1038/srep24454 | es_ES |
dc.description.references | Shin, S. Y., Lee, S., Yun, I. D., Kim, S. M., & Lee, K. M. (2019). Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Transactions on Medical Imaging, 38(3), 762-774. doi:10.1109/tmi.2018.2872031 | es_ES |
dc.description.references | Wang, J., Ding, H., Bidgoli, F. A., Zhou, B., Iribarren, C., Molloi, S., & Baldi, P. (2017). Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(5), 1172-1181. doi:10.1109/tmi.2017.2655486 | es_ES |
dc.description.references | Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., … Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303-312. doi:10.1016/j.media.2016.07.007 | es_ES |
dc.description.references | Debelee, T. G., Schwenker, F., Ibenthal, A., & Yohannes, D. (2019). Survey of deep learning in breast cancer image analysis. Evolving Systems, 11(1), 143-163. doi:10.1007/s12530-019-09297-2 | es_ES |
dc.description.references | Keen, J. D., Keen, J. M., & Keen, J. E. (2018). Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016. Journal of the American College of Radiology, 15(1), 44-48. doi:10.1016/j.jacr.2017.08.033 | es_ES |
dc.description.references | Henriksen, E. L., Carlsen, J. F., Vejborg, I. M., Nielsen, M. B., & Lauridsen, C. A. (2018). The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiologica, 60(1), 13-18. doi:10.1177/0284185118770917 | es_ES |
dc.description.references | Gao, Y., Geras, K. J., Lewin, A. A., & Moy, L. (2019). New Frontiers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Artificial Intelligence. American Journal of Roentgenology, 212(2), 300-307. doi:10.2214/ajr.18.20392 | es_ES |
dc.description.references | Pacilè, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., & Fillard, P. (2020). Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiology: Artificial Intelligence, 2(6), e190208. doi:10.1148/ryai.2020190208 | es_ES |
dc.description.references | Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. doi:10.1117/1.jmi.3.3.034501 | es_ES |
dc.description.references | Yap, M. H., Pons, G., Marti, J., Ganau, S., Sentis, M., Zwiggelaar, R., … Marti, R. (2018). Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(4), 1218-1226. doi:10.1109/jbhi.2017.2731873 | es_ES |
dc.description.references | Moon, W. K., Lee, Y.-W., Ke, H.-H., Lee, S. H., Huang, C.-S., & Chang, R.-F. (2020). Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Computer Methods and Programs in Biomedicine, 190, 105361. doi:10.1016/j.cmpb.2020.105361 | es_ES |
dc.description.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 | es_ES |
dc.description.references | Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044 | es_ES |
dc.description.references | Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., … Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285-1298. doi:10.1109/tmi.2016.2528162 | es_ES |
dc.description.references | Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570. doi:10.3348/kjr.2017.18.4.570 | es_ES |
dc.description.references | Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. doi:10.1007/s12194-017-0406-5 | es_ES |
dc.description.references | Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. doi:10.1016/j.ijsu.2010.02.007 | es_ES |
dc.description.references | Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five Steps to Conducting a Systematic Review. Journal of the Royal Society of Medicine, 96(3), 118-121. doi:10.1177/014107680309600304 | es_ES |
dc.description.references | Han, S., Kang, H.-K., Jeong, J.-Y., Park, M.-H., Kim, W., Bang, W.-C., & Seong, Y.-K. (2017). A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology, 62(19), 7714-7728. doi:10.1088/1361-6560/aa82ec | es_ES |
dc.description.references | Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. doi:10.1016/j.acra.2011.09.014 | es_ES |
dc.description.references | Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, 20(S11). doi:10.1186/s12859-019-2823-4 | es_ES |
dc.description.references | Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson, L., … Andre, M. (2020). Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 61, 102027. doi:10.1016/j.bspc.2020.102027 | es_ES |
dc.description.references | Jiao, Z., Gao, X., Wang, Y., & Li, J. (2016). A deep feature based framework for breast masses classification. Neurocomputing, 197, 221-231. doi:10.1016/j.neucom.2016.02.060 | es_ES |
dc.description.references | Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Guevara Lopez, M. A. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 127, 248-257. doi:10.1016/j.cmpb.2015.12.014 | es_ES |
dc.description.references | Peng, W., Mayorga, R. V., & Hussein, E. M. A. (2016). An automated confirmatory system for analysis of mammograms. Computer Methods and Programs in Biomedicine, 125, 134-144. doi:10.1016/j.cmpb.2015.09.019 | es_ES |
dc.description.references | Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi:10.1016/j.dib.2019.104863 | es_ES |
dc.description.references | Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., & Nowicki, A. (2017). Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Medical Physics, 44(11), 6105-6109. doi:10.1002/mp.12538 | es_ES |
dc.description.references | Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 13(1), 6-19. doi:10.1007/s12194-019-00552-4 | es_ES |
dc.description.references | Sengupta, S., Singh, A., Leopold, H. A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 102, 101758. doi:10.1016/j.artmed.2019.101758 | es_ES |
dc.description.references | Ganesan, K., Acharya, U. R., Chua, K. C., Min, L. C., & Abraham, K. T. (2013). Pectoral muscle segmentation: A review. Computer Methods and Programs in Biomedicine, 110(1), 48-57. doi:10.1016/j.cmpb.2012.10.020 | es_ES |
dc.description.references | Huang, Q., Luo, Y., & Zhang, Q. (2017). Breast ultrasound image segmentation: a survey. International Journal of Computer Assisted Radiology and Surgery, 12(3), 493-507. doi:10.1007/s11548-016-1513-1 | es_ES |
dc.description.references | Noble, J. A., & Boukerroui, D. (2006). Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging, 25(8), 987-1010. doi:10.1109/tmi.2006.877092 | es_ES |
dc.description.references | Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. Computerized Medical Imaging and Graphics, 16(5), 323-331. doi:10.1016/0895-6111(92)90145-y | es_ES |
dc.description.references | Tsantis, S., Dimitropoulos, N., Cavouras, D., & Nikiforidis, G. (2006). A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Computer Methods and Programs in Biomedicine, 84(2-3), 86-98. doi:10.1016/j.cmpb.2006.09.006 | es_ES |
dc.description.references | Ilesanmi, A. E., Idowu, O. P., & Makhanov, S. S. (2020). Multiscale superpixel method for segmentation of breast ultrasound. Computers in Biology and Medicine, 125, 103879. doi:10.1016/j.compbiomed.2020.103879 | es_ES |
dc.description.references | Chen, D.-R., Chang, R.-F., Kuo, W.-J., Chen, M.-C., & Huang, Y. .-L. (2002). Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound in Medicine & Biology, 28(10), 1301-1310. doi:10.1016/s0301-5629(02)00620-8 | es_ES |
dc.description.references | Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299-317. doi:10.1016/j.patcog.2009.05.012 | es_ES |
dc.description.references | Chan, H.-P., Wei, D., Helvie, M. A., Sahiner, B., Adler, D. D., Goodsitt, M. M., & Petrick, N. (1995). Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology, 40(5), 857-876. doi:10.1088/0031-9155/40/5/010 | es_ES |
dc.description.references | Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., & Tanaka, M. (2007). Pattern Classification of Nevus with Texture Analysis. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 143-150. doi:10.1002/tee.20246 | es_ES |
dc.description.references | Singh, B., Jain, V. K., & Singh, S. (2014). Mammogram Mass Classification Using Support Vector Machine with Texture, Shape Features and Hierarchical Centroid Method. Journal of Medical Imaging and Health Informatics, 4(5), 687-696. doi:10.1166/jmihi.2014.1312 | es_ES |
dc.description.references | Pal, N. R., Bhowmick, B., Patel, S. K., Pal, S., & Das, J. (2008). A multi-stage neural network aided system for detection of microcalcifications in digitized mammograms. Neurocomputing, 71(13-15), 2625-2634. doi:10.1016/j.neucom.2007.06.015 | es_ES |
dc.description.references | Ayer, T., Chen, Q., & Burnside, E. S. (2013). Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making. Computational and Mathematical Methods in Medicine, 2013, 1-10. doi:10.1155/2013/832509 | es_ES |
dc.description.references | Sumbaly, R., Vishnusri, N., & Jeyalatha, S. (2014). Diagnosis of Breast Cancer using Decision Tree Data Mining Technique. International Journal of Computer Applications, 98(10), 16-24. doi:10.5120/17219-7456 | es_ES |
dc.description.references | Landwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Trees. Machine Learning, 59(1-2), 161-205. doi:10.1007/s10994-005-0466-3 | es_ES |
dc.description.references | Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139-144. doi:10.1016/j.eswa.2015.10.015 | es_ES |
dc.description.references | Nishikawa, R. M., Giger, M. L., Doi, K., Metz, C. E., Yin, F.-F., Vyborny, C. J., & Schmidt, R. A. (1994). Effect of case selection on the performance of computer-aided detection schemes. Medical Physics, 21(2), 265-269. doi:10.1118/1.597287 | es_ES |
dc.description.references | Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine & Biology, 44(1), 37-70. doi:10.1016/j.ultrasmedbio.2017.09.012 | es_ES |
dc.description.references | Kang, C.-C., Wang, W.-J., & Kang, C.-H. (2012). Image segmentation with complicated background by using seeded region growing. AEU - International Journal of Electronics and Communications, 66(9), 767-771. doi:10.1016/j.aeue.2012.01.011 | es_ES |
dc.description.references | Prabusankarlal, K. M., Thirumoorthy, P., & Manavalan, R. (2014). Computer Aided Breast Cancer Diagnosis Techniques in Ultrasound: A Survey. Journal of Medical Imaging and Health Informatics, 4(3), 331-349. doi:10.1166/jmihi.2014.1269 | es_ES |
dc.description.references | Abdallah, Y. M., Elgak, S., Zain, H., Rafiq, M., A. Ebaid, E., & A. Elnaema, A. (2018). Breast cancer detection using image enhancement and segmentation algorithms. Biomedical Research, 29(20). doi:10.4066/biomedicalresearch.29-18-1106 | es_ES |
dc.description.references | K.U, S., & S, G. R. (2016). Objective Quality Assessment of Image Enhancement Methods in Digital Mammography - A Comparative Study. Signal & Image Processing : An International Journal, 7(4), 01-13. doi:10.5121/sipij.2016.7401 | es_ES |
dc.description.references | Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., … Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355-368. doi:10.1016/s0734-189x(87)80186-x | es_ES |
dc.description.references | Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., … Pizer, S. M. (1998). Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193-200. doi:10.1007/bf03178082 | es_ES |
dc.description.references | Wan, J., Yin, H., Chong, A.-X., & Liu, Z.-H. (2020). Progressive residual networks for image super-resolution. Applied Intelligence, 50(5), 1620-1632. doi:10.1007/s10489-019-01548-8 | es_ES |
dc.description.references | Umehara, K., Ota, J., & Ishida, T. (2017). Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open Journal of Medical Imaging, 07(04), 180-195. doi:10.4236/ojmi.2017.74018 | es_ES |
dc.description.references | Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281 | es_ES |
dc.description.references | Jiang, Y., & Li, J. (2020). Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. Applied Sciences, 10(5), 1729. doi:10.3390/app10051729 | es_ES |
dc.description.references | Schultz, R. R., & Stevenson, R. L. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233-242. doi:10.1109/83.287017 | es_ES |
dc.description.references | Lei Zhang, & Xiaolin Wu. (2006). An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238. doi:10.1109/tip.2006.877407 | es_ES |
dc.description.references | Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0197-0 | es_ES |
dc.description.references | Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1). doi:10.1186/s40537-016-0043-6 | es_ES |
dc.description.references | Ling Shao, Fan Zhu, & Xuelong Li. (2015). Transfer Learning for Visual Categorization: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 1019-1034. doi:10.1109/tnnls.2014.2330900 | es_ES |
dc.description.references | Gatys, L., Ecker, A., & Bethge, M. (2016). A Neural Algorithm of Artistic Style. Journal of Vision, 16(12), 326. doi:10.1167/16.12.326 | es_ES |
dc.description.references | Saeed, J. N. (2020). A SURVEY OF ULTRASONOGRAPHY BREAST CANCER IMAGE SEGMENTATION TECHNIQUES. Academic Journal of Nawroz University, 9(1), 1. doi:10.25007/ajnu.v9n1a523 | es_ES |
dc.description.references | Gardezi, S. J. S., Elazab, A., Lei, B., & Wang, T. (2019). Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review. Journal of Medical Internet Research, 21(7), e14464. doi:10.2196/14464 | es_ES |
dc.description.references | Al-masni Mohammed A., Al-antari Mugahed A., Park, J.-M., Gi, G., Kim, T.-Y., Rivera, P., … Kim, T.-S. (2018). Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer Methods and Programs in Biomedicine, 157, 85-94. doi:10.1016/j.cmpb.2018.01.017 | es_ES |
dc.description.references | Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. doi:10.1109/tpami.2016.2644615 | es_ES |
dc.description.references | Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234-241. doi:10.1007/978-3-319-24574-4_28 | es_ES |
dc.description.references | Romera, E., Alvarez, J. M., Bergasa, L. M., & Arroyo, R. (2018). ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation. IEEE Transactions on Intelligent Transportation Systems, 19(1), 263-272. doi:10.1109/tits.2017.2750080 | es_ES |
dc.description.references | Lee, C., & Landgrebe, D. A. (1993). Feature extraction based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4), 388-400. doi:10.1109/34.206958 | es_ES |
dc.description.references | Cao, Z., Duan, L., Yang, G., Yue, T., & Chen, Q. (2019). An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC Medical Imaging, 19(1). doi:10.1186/s12880-019-0349-x | es_ES |
dc.description.references | Chiao, J.-Y., Chen, K.-Y., Liao, K. Y.-K., Hsieh, P.-H., Zhang, G., & Huang, T.-C. (2019). Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine, 98(19), e15200. doi:10.1097/md.0000000000015200 | es_ES |
dc.description.references | Hu, F., Xia, G.-S., Hu, J., & Zhang, L. (2015). Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sensing, 7(11), 14680-14707. doi:10.3390/rs71114680 | es_ES |
dc.description.references | Kooi, T., van Ginneken, B., Karssemeijer, N., & den Heeten, A. (2017). Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Medical Physics, 44(3), 1017-1027. doi:10.1002/mp.12110 | es_ES |
dc.description.references | Chan, H.-P., Lo, S.-C. B., Sahiner, B., Lam, K. L., & Helvie, M. A. (1995). Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Medical Physics, 22(10), 1555-1567. doi:10.1118/1.597428 | es_ES |
dc.description.references | Carneiro, G., Nascimento, J., & Bradley, A. P. (2017). Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(11), 2355-2365. doi:10.1109/tmi.2017.2751523 | es_ES |
dc.description.references | Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791 | es_ES |
dc.description.references | Huynh, B., Drukker, K., & Giger, M. (2016). MO-DE-207B-06: Computer-Aided Diagnosis of Breast Ultrasound Images Using Transfer Learning From Deep Convolutional Neural Networks. Medical Physics, 43(6Part30), 3705-3705. doi:10.1118/1.4957255 | es_ES |
dc.description.references | Liu, Y., & Yao, X. (1999). Ensemble learning via negative correlation. Neural Networks, 12(10), 1399-1404. doi:10.1016/s0893-6080(99)00073-8 | es_ES |
dc.description.references | Ragab, D. A., Sharkas, M., Marshall, S., & Ren, J. (2019). Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ, 7, e6201. doi:10.7717/peerj.6201 | es_ES |
dc.description.references | Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-y | es_ES |
dc.description.references | Samala, R. K., Chan, H.-P., Hadjiiski, L., Helvie, M. A., Wei, J., & Cha, K. (2016). Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Medical Physics, 43(12), 6654-6666. doi:10.1118/1.4967345 | es_ES |
dc.description.references | Dhungel, N., Carneiro, G., & Bradley, A. P. (2017). A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Medical Image Analysis, 37, 114-128. doi:10.1016/j.media.2017.01.009 | es_ES |
dc.description.references | Breast Ultrasound Imagehttps://data.mendeley.com/datasets/wmy84gzngw/1 | es_ES |
dc.description.references | Duggento, A., Aiello, M., Cavaliere, C., Cascella, G. L., Cascella, D., Conte, G., … Toschi, N. (2019). An Ad Hoc Random Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images. Contrast Media & Molecular Imaging, 2019, 1-9. doi:10.1155/2019/5982834 | es_ES |
dc.description.references | Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep Convolutional Neural Networks for breast cancer screening. Computer Methods and Programs in Biomedicine, 157, 19-30. doi:10.1016/j.cmpb.2018.01.011 | es_ES |
dc.description.references | Dheeba, J., Albert Singh, N., & Tamil Selvi, S. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45-52. doi:10.1016/j.jbi.2014.01.010 | es_ES |
dc.description.references | Trivizakis, E., Ioannidis, G., Melissianos, V., Papadakis, G., Tsatsakis, A., Spandidos, D., & Marias, K. (2019). A novel deep learning architecture outperforming ‘off‑the‑shelf’ transfer learning and feature‑based methods in the automated assessment of mammographic breast density. Oncology Reports. doi:10.3892/or.2019.7312 | es_ES |
dc.description.references | Jadoon, M. M., Zhang, Q., Haq, I. U., Butt, S., & Jadoon, A. (2017). Three-Class Mammogram Classification Based on Descriptive CNN Features. BioMed Research International, 2017, 1-11. doi:10.1155/2017/3640901 | es_ES |
dc.description.references | Gu, P., Lee, W.-M., Roubidoux, M. A., Yuan, J., Wang, X., & Carson, P. L. (2016). Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics, 65, 51-58. doi:10.1016/j.ultras.2015.10.023 | es_ES |
dc.description.references | Singh, B. K., Verma, K., & Thoke, A. S. (2016). Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Systems with Applications, 66, 114-123. doi:10.1016/j.eswa.2016.09.006 | es_ES |
dc.description.references | Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., & Wang, T. (2016). Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing, 194, 87-94. doi:10.1016/j.neucom.2016.01.074 | es_ES |
dc.description.references | Zou, L., Yu, S., Meng, T., Zhang, Z., Liang, X., & Xie, Y. (2019). A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis. Computational and Mathematical Methods in Medicine, 2019, 1-16. doi:10.1155/2019/6509357 | es_ES |