- -

Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González, Rubén es_ES
dc.contributor.author Butkovic, Anamarija es_ES
dc.contributor.author ELENA FITO, SANTIAGO FCO es_ES
dc.date.accessioned 2021-03-05T04:33:09Z
dc.date.available 2021-03-05T04:33:09Z
dc.date.issued 2019-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163201
dc.description This article has been accepted for publication in Virus Evolution published by Oxford University Press. es_ES
dc.description.abstract [EN] Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen. es_ES
dc.description.sponsorship We thank Francisca de la Iglesia for continuous excellent technical support. Work was supported by Spain's Agencia Estatal de Investigacion-FEDER grant BFU2015-65037-P and Generalitat Valenciana grant GRISOLIA/2018/005 to S.F.E. R.G. was supported by Spain's Agencia Estatal de Investigacion pre-doctoral contract BES-2016-077078. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Virus Evolution es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Evolution of virulence es_ES
dc.subject Experimental evolution es_ES
dc.subject Infection matrix es_ES
dc.subject Host population structure es_ES
dc.subject Potyvirus es_ES
dc.subject Resistance to infection es_ES
dc.subject Virus evolution es_ES
dc.title Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/ve/vez024 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077078/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation González, R.; Butkovic, A.; Elena Fito, SF. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evolution. 5(2):1-12. https://doi.org/10.1093/ve/vez024 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/ve/vez024 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2057-1577 es_ES
dc.identifier.pmid 31768264 es_ES
dc.identifier.pmcid PMC6863064 es_ES
dc.relation.pasarela S\400651 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9(4), 467-484. doi:10.1111/j.1461-0248.2005.00879.x es_ES
dc.description.references Anttila, J., Kaitala, V., Laakso, J., & Ruokolainen, L. (2015). Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks. PLOS ONE, 10(12), e0145511. doi:10.1371/journal.pone.0145511 es_ES
dc.description.references Bascompte, J., Jordano, P., Melian, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383-9387. doi:10.1073/pnas.1633576100 es_ES
dc.description.references Baylis, M. (2017). Potential impact of climate change on emerging vector-borne and other infections in the UK. Environmental Health, 16(S1). doi:10.1186/s12940-017-0326-1 es_ES
dc.description.references Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010 es_ES
dc.description.references Bennett, A. F., Lenski, R. E., & Mittler, J. E. (1992). EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT. Evolution, 46(1), 16-30. doi:10.1111/j.1558-5646.1992.tb01981.x es_ES
dc.description.references Berngruber, T. W., Lion, S., & Gandon, S. (2015). Spatial Structure, Transmission Modes and the Evolution of Viral Exploitation Strategies. PLOS Pathogens, 11(4), e1004810. doi:10.1371/journal.ppat.1004810 es_ES
dc.description.references Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). BMC Ecology, 6(1), 9. doi:10.1186/1472-6785-6-9 es_ES
dc.description.references Boots, M., & Mealor, M. (2007). Local Interactions Select for Lower Pathogen Infectivity. Science, 315(5816), 1284-1286. doi:10.1126/science.1137126 es_ES
dc.description.references Boots, M., & Sasaki, A. (1999). ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1432), 1933-1938. doi:10.1098/rspb.1999.0869 es_ES
dc.description.references Boots, M., & Sasaki, A. (2002). Parasite‐Driven Extinction in Spatially Explicit Host‐Parasite Systems. The American Naturalist, 159(6), 706-713. doi:10.1086/339996 es_ES
dc.description.references BROCKHURST, M. A., BUCKLING, A., & RAINEY, P. B. (2006). Spatial heterogeneity and the stability of host-parasite coexistence. Journal of Evolutionary Biology, 19(2), 374-379. doi:10.1111/j.1420-9101.2005.01026.x es_ES
dc.description.references Brown, J. K. M., & Tellier, A. (2011). Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology. Annual Review of Phytopathology, 49(1), 345-367. doi:10.1146/annurev-phyto-072910-095301 es_ES
dc.description.references Chabas, H., Lion, S., Nicot, A., Meaden, S., van Houte, S., Moineau, S., … Gandon, S. (2018). Evolutionary emergence of infectious diseases in heterogeneous host populations. PLOS Biology, 16(9), e2006738. doi:10.1371/journal.pbio.2006738 es_ES
dc.description.references Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification of Turnip mosaic virus Isolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901 es_ES
dc.description.references Comins, H. N., Hassell, M. P., & May, R. M. (1992). The Spatial Dynamics of Host--Parasitoid Systems. The Journal of Animal Ecology, 61(3), 735. doi:10.2307/5627 es_ES
dc.description.references Cornwall, D. H., Kubinak, J. L., Zachary, E., Stark, D. L., Seipel, D., & Potts, W. K. (2018). Experimental manipulation of population-level MHC diversity controls pathogen virulence evolution inMus musculus. Journal of Evolutionary Biology, 31(2), 314-322. doi:10.1111/jeb.13225 es_ES
dc.description.references Cuevas, J. M., Moya, A., & Elena, S. F. (2003). Evolution of RNA virus in spatially structured heterogeneous environments. Journal of Evolutionary Biology, 16(3), 456-466. doi:10.1046/j.1420-9101.2003.00547.x es_ES
dc.description.references Di Giallonardo, F., & Holmes, E. C. (2015). Viral biocontrol: grand experiments in disease emergence and evolution. Trends in Microbiology, 23(2), 83-90. doi:10.1016/j.tim.2014.10.004 es_ES
dc.description.references Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5 es_ES
dc.description.references Fry, J. D. (1996). The Evolution of Host Specialization: Are Trade-Offs Overrated? The American Naturalist, 148, S84-S107. doi:10.1086/285904 es_ES
dc.description.references Furio, V., Garijo, R., Duran, M., Moya, A., Bell, J. C., & Sanjuan, R. (2012). Relationship between within-Host Fitness and Virulence in the Vesicular Stomatitis Virus: Correlation with Partial Decoupling. Journal of Virology, 86(22), 12228-12236. doi:10.1128/jvi.00755-12 es_ES
dc.description.references Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.x es_ES
dc.description.references Local adaptation and gene-for-gene coevolution in a metapopulation model. (1996). Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1373), 1003-1009. doi:10.1098/rspb.1996.0148 es_ES
dc.description.references Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15(3), 451-462. doi:10.1046/j.1420-9101.2002.00402.x es_ES
dc.description.references Ganusov, V. V., Bergstrom, C. T., & Antia, R. (2002). WITHIN-HOST POPULATION DYNAMICS AND THE EVOLUTION OF MICROPARASITES IN A HETEROGENEOUS HOST POPULATION. Evolution, 56(2), 213-223. doi:10.1111/j.0014-3820.2002.tb01332.x es_ES
dc.description.references Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420 es_ES
dc.description.references Gavrilets, S., & Gibson, N. (2002). Fixation probabilities in a spatially heterogeneous environment. Population Ecology, 44(2), 51-58. doi:10.1007/s101440200007 es_ES
dc.description.references HARAGUCHI, Y., & SASAKI, A. (2000). The Evolution of Parasite Virulence and Transmission Rate in a Spatially Structured Population. Journal of Theoretical Biology, 203(2), 85-96. doi:10.1006/jtbi.1999.1065 es_ES
dc.description.references Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 es_ES
dc.description.references HUGHES, W. O. H., & BOOMSMA, J. J. (2006). Does genetic diversity hinder parasite evolution in social insect colonies? Journal of Evolutionary Biology, 19(1), 132-143. doi:10.1111/j.1420-9101.2005.00979.x es_ES
dc.description.references Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15(2), 173-190. doi:10.1046/j.1420-9101.2002.00377.x es_ES
dc.description.references Kassen, R., & Bell, G. (1998). Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity, 80(6), 732-741. doi:10.1046/j.1365-2540.1998.00329.x es_ES
dc.description.references Koonin, E. V., Wolf, Y. I., Nagasaki, K., & Dolja, V. V. (2008). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology, 6(12), 925-939. doi:10.1038/nrmicro2030 es_ES
dc.description.references Kubinak, J. L., Cornwall, D. H., Hasenkrug, K. J., Adler, F. R., & Potts, W. K. (2015). Serial infection of diverse host ( Mus ) genotypes rapidly impedes pathogen fitness and virulence. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20141568. doi:10.1098/rspb.2014.1568 es_ES
dc.description.references Leggett, H. C., Buckling, A., Long, G. H., & Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in Ecology & Evolution, 28(10), 592-596. doi:10.1016/j.tree.2013.07.002 es_ES
dc.description.references Lively, C. M. (2010). The Effect of Host Genetic Diversity on Disease Spread. The American Naturalist, 175(6), E149-E152. doi:10.1086/652430 es_ES
dc.description.references Malpica, J. M., Sacristán, S., Fraile, A., & García-Arenal, F. (2006). Association and Host Selectivity in Multi-Host Pathogens. PLoS ONE, 1(1), e41. doi:10.1371/journal.pone.0000041 es_ES
dc.description.references McLeish, M., Sacristán, S., Fraile, A., & García-Arenal, F. (2017). Scale dependencies and generalism in host use shape virus prevalence. Proceedings of the Royal Society B: Biological Sciences, 284(1869), 20172066. doi:10.1098/rspb.2017.2066 es_ES
dc.description.references Moreno-Gámez, S., Stephan, W., & Tellier, A. (2013). Effect of disease prevalence and spatial heterogeneity on polymorphism maintenance in host-parasite interactions. Plant Pathology, 62, 133-141. doi:10.1111/ppa.12131 es_ES
dc.description.references Morens, D. M., & Fauci, A. S. (2013). Emerging Infectious Diseases: Threats to Human Health and Global Stability. PLoS Pathogens, 9(7), e1003467. doi:10.1371/journal.ppat.1003467 es_ES
dc.description.references Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. doi:10.1073/pnas.0601602103 es_ES
dc.description.references Papaïx, J., David, O., Lannou, C., & Monod, H. (2013). Dynamics of Adaptation in Spatially Heterogeneous Metapopulations. PLoS ONE, 8(2), e54697. doi:10.1371/journal.pone.0054697 es_ES
dc.description.references Parratt, S. R., Numminen, E., & Laine, A.-L. (2016). Infectious Disease Dynamics in Heterogeneous Landscapes. Annual Review of Ecology, Evolution, and Systematics, 47(1), 283-306. doi:10.1146/annurev-ecolsys-121415-032321 es_ES
dc.description.references Pfennig, K. S. (2001). Evolution of pathogen virulence: the role of variation in host phenotype. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1468), 755-760. doi:10.1098/rspb.2000.1582 es_ES
dc.description.references Regoes, R. R., Nowak, M. A., & Bonhoeffer, S. (2000). EVOLUTION OF VIRULENCE IN A HETEROGENEOUS HOST POPULATION. Evolution, 54(1), 64-71. doi:10.1111/j.0014-3820.2000.tb00008.x es_ES
dc.description.references Rodelo-Urrego, M., Pagán, I., González-Jara, P., Betancourt, M., Moreno-Letelier, A., Ayllón, M. A., … García-Arenal, F. (2013). Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Molecular Ecology, 22(8), 2325-2340. doi:10.1111/mec.12232 es_ES
dc.description.references Rodelo-Urrego, M., García-Arenal, F., & Pagán, I. (2015). The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico. Virus Evolution, 1(1). doi:10.1093/ve/vev004 es_ES
dc.description.references RodrÍguez, D. (2001). Models of Infectious Diseases in Spatially Heterogeneous Environments. Bulletin of Mathematical Biology, 63(3), 547-571. doi:10.1006/bulm.2001.0231 es_ES
dc.description.references Rosenthal, S. R., Ostfeld, R. S., McGarvey, S. T., Lurie, M. N., & Smith, K. F. (2015). Redefining disease emergence to improve prioritization and macro-ecological analyses. One Health, 1, 17-23. doi:10.1016/j.onehlt.2015.08.001 es_ES
dc.description.references Rubio, B., Cosson, P., Caballero, M., Revers, F., Bergelson, J., Roux, F., & Schurdi‐Levraud, V. (2018). Genome‐wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (Tu MV ) interactions in the field. New Phytologist, 221(4), 2026-2038. doi:10.1111/nph.15507 es_ES
dc.description.references Schmid-Hempel, P., & Koella, J. C. (1994). Variability and its implications for host-parasite interactions. Parasitology Today, 10(3), 98-102. doi:10.1016/0169-4758(94)90007-8 es_ES
dc.description.references Simko, I., & Piepho, H.-P. (2012). The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology®, 102(4), 381-389. doi:10.1094/phyto-07-11-0216 es_ES
dc.description.references Thrall, P. H., & Burdon, J. J. (2003). Evolution of Virulence in a Plant Host-Pathogen Metapopulation. Science, 299(5613), 1735-1737. doi:10.1126/science.1080070 es_ES
dc.description.references Thrall, P. H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P. N., Barrett, L. G., & Burdon, J. J. (2012). Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 15(5), 425-435. doi:10.1111/j.1461-0248.2012.01749.x es_ES
dc.description.references Vurro, M., Bonciani, B., & Vannacci, G. (2010). Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security, 2(2), 113-132. doi:10.1007/s12571-010-0062-7 es_ES
dc.description.references Weitz, J. S., Poisot, T., Meyer, J. R., Flores, C. O., Valverde, S., Sullivan, M. B., & Hochberg, M. E. (2013). Phage–bacteria infection networks. Trends in Microbiology, 21(2), 82-91. doi:10.1016/j.tim.2012.11.003 es_ES
dc.description.references Whitlock, M. C. (1996). The Red Queen Beats the Jack-Of-All-Trades: The Limitations on the Evolution of Phenotypic Plasticity and Niche Breadth. The American Naturalist, 148, S65-S77. doi:10.1086/285902 es_ES
dc.description.references Whitlock, M. C., & Gomulkiewicz, R. (2005). Probability of Fixation in a Heterogeneous Environment. Genetics, 171(3), 1407-1417. doi:10.1534/genetics.104.040089 es_ES
dc.description.references Woolhouse, M. E. J., & Dye, C. (2001). Preface. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 981-982. doi:10.1098/rstb.2001.0899 es_ES
dc.description.references Yates, A., Antia, R., & Regoes, R. R. (2006). How do pathogen evolution and host heterogeneity interact in disease emergence? Proceedings of the Royal Society B: Biological Sciences, 273(1605), 3075-3083. doi:10.1098/rspb.2006.3681 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem