Mostrar el registro sencillo del ítem
dc.contributor.author | González, Rubén | es_ES |
dc.contributor.author | Butkovic, Anamarija | es_ES |
dc.contributor.author | ELENA FITO, SANTIAGO FCO | es_ES |
dc.date.accessioned | 2021-03-05T04:33:09Z | |
dc.date.available | 2021-03-05T04:33:09Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163201 | |
dc.description | This article has been accepted for publication in Virus Evolution published by Oxford University Press. | es_ES |
dc.description.abstract | [EN] Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen. | es_ES |
dc.description.sponsorship | We thank Francisca de la Iglesia for continuous excellent technical support. Work was supported by Spain's Agencia Estatal de Investigacion-FEDER grant BFU2015-65037-P and Generalitat Valenciana grant GRISOLIA/2018/005 to S.F.E. R.G. was supported by Spain's Agencia Estatal de Investigacion pre-doctoral contract BES-2016-077078. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Virus Evolution | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Evolution of virulence | es_ES |
dc.subject | Experimental evolution | es_ES |
dc.subject | Infection matrix | es_ES |
dc.subject | Host population structure | es_ES |
dc.subject | Potyvirus | es_ES |
dc.subject | Resistance to infection | es_ES |
dc.subject | Virus evolution | es_ES |
dc.title | Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/ve/vez024 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2016-077078/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | González, R.; Butkovic, A.; Elena Fito, SF. (2019). Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evolution. 5(2):1-12. https://doi.org/10.1093/ve/vez024 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/ve/vez024 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2057-1577 | es_ES |
dc.identifier.pmid | 31768264 | es_ES |
dc.identifier.pmcid | PMC6863064 | es_ES |
dc.relation.pasarela | S\400651 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9(4), 467-484. doi:10.1111/j.1461-0248.2005.00879.x | es_ES |
dc.description.references | Anttila, J., Kaitala, V., Laakso, J., & Ruokolainen, L. (2015). Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks. PLOS ONE, 10(12), e0145511. doi:10.1371/journal.pone.0145511 | es_ES |
dc.description.references | Bascompte, J., Jordano, P., Melian, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383-9387. doi:10.1073/pnas.1633576100 | es_ES |
dc.description.references | Baylis, M. (2017). Potential impact of climate change on emerging vector-borne and other infections in the UK. Environmental Health, 16(S1). doi:10.1186/s12940-017-0326-1 | es_ES |
dc.description.references | Belshaw, R., Gardner, A., Rambaut, A., & Pybus, O. G. (2008). Pacing a small cage: mutation and RNA viruses. Trends in Ecology & Evolution, 23(4), 188-193. doi:10.1016/j.tree.2007.11.010 | es_ES |
dc.description.references | Bennett, A. F., Lenski, R. E., & Mittler, J. E. (1992). EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT. Evolution, 46(1), 16-30. doi:10.1111/j.1558-5646.1992.tb01981.x | es_ES |
dc.description.references | Berngruber, T. W., Lion, S., & Gandon, S. (2015). Spatial Structure, Transmission Modes and the Evolution of Viral Exploitation Strategies. PLOS Pathogens, 11(4), e1004810. doi:10.1371/journal.ppat.1004810 | es_ES |
dc.description.references | Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). BMC Ecology, 6(1), 9. doi:10.1186/1472-6785-6-9 | es_ES |
dc.description.references | Boots, M., & Mealor, M. (2007). Local Interactions Select for Lower Pathogen Infectivity. Science, 315(5816), 1284-1286. doi:10.1126/science.1137126 | es_ES |
dc.description.references | Boots, M., & Sasaki, A. (1999). ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1432), 1933-1938. doi:10.1098/rspb.1999.0869 | es_ES |
dc.description.references | Boots, M., & Sasaki, A. (2002). Parasite‐Driven Extinction in Spatially Explicit Host‐Parasite Systems. The American Naturalist, 159(6), 706-713. doi:10.1086/339996 | es_ES |
dc.description.references | BROCKHURST, M. A., BUCKLING, A., & RAINEY, P. B. (2006). Spatial heterogeneity and the stability of host-parasite coexistence. Journal of Evolutionary Biology, 19(2), 374-379. doi:10.1111/j.1420-9101.2005.01026.x | es_ES |
dc.description.references | Brown, J. K. M., & Tellier, A. (2011). Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology. Annual Review of Phytopathology, 49(1), 345-367. doi:10.1146/annurev-phyto-072910-095301 | es_ES |
dc.description.references | Chabas, H., Lion, S., Nicot, A., Meaden, S., van Houte, S., Moineau, S., … Gandon, S. (2018). Evolutionary emergence of infectious diseases in heterogeneous host populations. PLOS Biology, 16(9), e2006738. doi:10.1371/journal.pbio.2006738 | es_ES |
dc.description.references | Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification of Turnip mosaic virus Isolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901 | es_ES |
dc.description.references | Comins, H. N., Hassell, M. P., & May, R. M. (1992). The Spatial Dynamics of Host--Parasitoid Systems. The Journal of Animal Ecology, 61(3), 735. doi:10.2307/5627 | es_ES |
dc.description.references | Cornwall, D. H., Kubinak, J. L., Zachary, E., Stark, D. L., Seipel, D., & Potts, W. K. (2018). Experimental manipulation of population-level MHC diversity controls pathogen virulence evolution inMus musculus. Journal of Evolutionary Biology, 31(2), 314-322. doi:10.1111/jeb.13225 | es_ES |
dc.description.references | Cuevas, J. M., Moya, A., & Elena, S. F. (2003). Evolution of RNA virus in spatially structured heterogeneous environments. Journal of Evolutionary Biology, 16(3), 456-466. doi:10.1046/j.1420-9101.2003.00547.x | es_ES |
dc.description.references | Di Giallonardo, F., & Holmes, E. C. (2015). Viral biocontrol: grand experiments in disease emergence and evolution. Trends in Microbiology, 23(2), 83-90. doi:10.1016/j.tim.2014.10.004 | es_ES |
dc.description.references | Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen–host–environment interplay and disease emergence. Emerging Microbes & Infections, 2(1), 1-7. doi:10.1038/emi.2013.5 | es_ES |
dc.description.references | Fry, J. D. (1996). The Evolution of Host Specialization: Are Trade-Offs Overrated? The American Naturalist, 148, S84-S107. doi:10.1086/285904 | es_ES |
dc.description.references | Furio, V., Garijo, R., Duran, M., Moya, A., Bell, J. C., & Sanjuan, R. (2012). Relationship between within-Host Fitness and Virulence in the Vesicular Stomatitis Virus: Correlation with Partial Decoupling. Journal of Virology, 86(22), 12228-12236. doi:10.1128/jvi.00755-12 | es_ES |
dc.description.references | Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.x | es_ES |
dc.description.references | Local adaptation and gene-for-gene coevolution in a metapopulation model. (1996). Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1373), 1003-1009. doi:10.1098/rspb.1996.0148 | es_ES |
dc.description.references | Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15(3), 451-462. doi:10.1046/j.1420-9101.2002.00402.x | es_ES |
dc.description.references | Ganusov, V. V., Bergstrom, C. T., & Antia, R. (2002). WITHIN-HOST POPULATION DYNAMICS AND THE EVOLUTION OF MICROPARASITES IN A HETEROGENEOUS HOST POPULATION. Evolution, 56(2), 213-223. doi:10.1111/j.0014-3820.2002.tb01332.x | es_ES |
dc.description.references | Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology, 44(1), 489-509. doi:10.1146/annurev.phyto.44.070505.143420 | es_ES |
dc.description.references | Gavrilets, S., & Gibson, N. (2002). Fixation probabilities in a spatially heterogeneous environment. Population Ecology, 44(2), 51-58. doi:10.1007/s101440200007 | es_ES |
dc.description.references | HARAGUCHI, Y., & SASAKI, A. (2000). The Evolution of Parasite Virulence and Transmission Rate in a Spatially Structured Population. Journal of Theoretical Biology, 203(2), 85-96. doi:10.1006/jtbi.1999.1065 | es_ES |
dc.description.references | Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 | es_ES |
dc.description.references | HUGHES, W. O. H., & BOOMSMA, J. J. (2006). Does genetic diversity hinder parasite evolution in social insect colonies? Journal of Evolutionary Biology, 19(1), 132-143. doi:10.1111/j.1420-9101.2005.00979.x | es_ES |
dc.description.references | Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15(2), 173-190. doi:10.1046/j.1420-9101.2002.00377.x | es_ES |
dc.description.references | Kassen, R., & Bell, G. (1998). Experimental evolution in Chlamydomonas. IV. Selection in environments that vary through time at different scales. Heredity, 80(6), 732-741. doi:10.1046/j.1365-2540.1998.00329.x | es_ES |
dc.description.references | Koonin, E. V., Wolf, Y. I., Nagasaki, K., & Dolja, V. V. (2008). The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology, 6(12), 925-939. doi:10.1038/nrmicro2030 | es_ES |
dc.description.references | Kubinak, J. L., Cornwall, D. H., Hasenkrug, K. J., Adler, F. R., & Potts, W. K. (2015). Serial infection of diverse host ( Mus ) genotypes rapidly impedes pathogen fitness and virulence. Proceedings of the Royal Society B: Biological Sciences, 282(1798), 20141568. doi:10.1098/rspb.2014.1568 | es_ES |
dc.description.references | Leggett, H. C., Buckling, A., Long, G. H., & Boots, M. (2013). Generalism and the evolution of parasite virulence. Trends in Ecology & Evolution, 28(10), 592-596. doi:10.1016/j.tree.2013.07.002 | es_ES |
dc.description.references | Lively, C. M. (2010). The Effect of Host Genetic Diversity on Disease Spread. The American Naturalist, 175(6), E149-E152. doi:10.1086/652430 | es_ES |
dc.description.references | Malpica, J. M., Sacristán, S., Fraile, A., & García-Arenal, F. (2006). Association and Host Selectivity in Multi-Host Pathogens. PLoS ONE, 1(1), e41. doi:10.1371/journal.pone.0000041 | es_ES |
dc.description.references | McLeish, M., Sacristán, S., Fraile, A., & García-Arenal, F. (2017). Scale dependencies and generalism in host use shape virus prevalence. Proceedings of the Royal Society B: Biological Sciences, 284(1869), 20172066. doi:10.1098/rspb.2017.2066 | es_ES |
dc.description.references | Moreno-Gámez, S., Stephan, W., & Tellier, A. (2013). Effect of disease prevalence and spatial heterogeneity on polymorphism maintenance in host-parasite interactions. Plant Pathology, 62, 133-141. doi:10.1111/ppa.12131 | es_ES |
dc.description.references | Morens, D. M., & Fauci, A. S. (2013). Emerging Infectious Diseases: Threats to Human Health and Global Stability. PLoS Pathogens, 9(7), e1003467. doi:10.1371/journal.ppat.1003467 | es_ES |
dc.description.references | Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. doi:10.1073/pnas.0601602103 | es_ES |
dc.description.references | Papaïx, J., David, O., Lannou, C., & Monod, H. (2013). Dynamics of Adaptation in Spatially Heterogeneous Metapopulations. PLoS ONE, 8(2), e54697. doi:10.1371/journal.pone.0054697 | es_ES |
dc.description.references | Parratt, S. R., Numminen, E., & Laine, A.-L. (2016). Infectious Disease Dynamics in Heterogeneous Landscapes. Annual Review of Ecology, Evolution, and Systematics, 47(1), 283-306. doi:10.1146/annurev-ecolsys-121415-032321 | es_ES |
dc.description.references | Pfennig, K. S. (2001). Evolution of pathogen virulence: the role of variation in host phenotype. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1468), 755-760. doi:10.1098/rspb.2000.1582 | es_ES |
dc.description.references | Regoes, R. R., Nowak, M. A., & Bonhoeffer, S. (2000). EVOLUTION OF VIRULENCE IN A HETEROGENEOUS HOST POPULATION. Evolution, 54(1), 64-71. doi:10.1111/j.0014-3820.2000.tb00008.x | es_ES |
dc.description.references | Rodelo-Urrego, M., Pagán, I., González-Jara, P., Betancourt, M., Moreno-Letelier, A., Ayllón, M. A., … García-Arenal, F. (2013). Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Molecular Ecology, 22(8), 2325-2340. doi:10.1111/mec.12232 | es_ES |
dc.description.references | Rodelo-Urrego, M., García-Arenal, F., & Pagán, I. (2015). The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico. Virus Evolution, 1(1). doi:10.1093/ve/vev004 | es_ES |
dc.description.references | RodrÍguez, D. (2001). Models of Infectious Diseases in Spatially Heterogeneous Environments. Bulletin of Mathematical Biology, 63(3), 547-571. doi:10.1006/bulm.2001.0231 | es_ES |
dc.description.references | Rosenthal, S. R., Ostfeld, R. S., McGarvey, S. T., Lurie, M. N., & Smith, K. F. (2015). Redefining disease emergence to improve prioritization and macro-ecological analyses. One Health, 1, 17-23. doi:10.1016/j.onehlt.2015.08.001 | es_ES |
dc.description.references | Rubio, B., Cosson, P., Caballero, M., Revers, F., Bergelson, J., Roux, F., & Schurdi‐Levraud, V. (2018). Genome‐wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (Tu MV ) interactions in the field. New Phytologist, 221(4), 2026-2038. doi:10.1111/nph.15507 | es_ES |
dc.description.references | Schmid-Hempel, P., & Koella, J. C. (1994). Variability and its implications for host-parasite interactions. Parasitology Today, 10(3), 98-102. doi:10.1016/0169-4758(94)90007-8 | es_ES |
dc.description.references | Simko, I., & Piepho, H.-P. (2012). The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology®, 102(4), 381-389. doi:10.1094/phyto-07-11-0216 | es_ES |
dc.description.references | Thrall, P. H., & Burdon, J. J. (2003). Evolution of Virulence in a Plant Host-Pathogen Metapopulation. Science, 299(5613), 1735-1737. doi:10.1126/science.1080070 | es_ES |
dc.description.references | Thrall, P. H., Laine, A.-L., Ravensdale, M., Nemri, A., Dodds, P. N., Barrett, L. G., & Burdon, J. J. (2012). Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 15(5), 425-435. doi:10.1111/j.1461-0248.2012.01749.x | es_ES |
dc.description.references | Vurro, M., Bonciani, B., & Vannacci, G. (2010). Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Security, 2(2), 113-132. doi:10.1007/s12571-010-0062-7 | es_ES |
dc.description.references | Weitz, J. S., Poisot, T., Meyer, J. R., Flores, C. O., Valverde, S., Sullivan, M. B., & Hochberg, M. E. (2013). Phage–bacteria infection networks. Trends in Microbiology, 21(2), 82-91. doi:10.1016/j.tim.2012.11.003 | es_ES |
dc.description.references | Whitlock, M. C. (1996). The Red Queen Beats the Jack-Of-All-Trades: The Limitations on the Evolution of Phenotypic Plasticity and Niche Breadth. The American Naturalist, 148, S65-S77. doi:10.1086/285902 | es_ES |
dc.description.references | Whitlock, M. C., & Gomulkiewicz, R. (2005). Probability of Fixation in a Heterogeneous Environment. Genetics, 171(3), 1407-1417. doi:10.1534/genetics.104.040089 | es_ES |
dc.description.references | Woolhouse, M. E. J., & Dye, C. (2001). Preface. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 981-982. doi:10.1098/rstb.2001.0899 | es_ES |
dc.description.references | Yates, A., Antia, R., & Regoes, R. R. (2006). How do pathogen evolution and host heterogeneity interact in disease emergence? Proceedings of the Royal Society B: Biological Sciences, 273(1605), 3075-3083. doi:10.1098/rspb.2006.3681 | es_ES |