- -

A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pallares-Muñoz, Myriam R. es_ES
dc.contributor.author Paya-Zaforteza, Ignacio es_ES
dc.contributor.author Hospitaler Pérez, Antonio es_ES
dc.date.accessioned 2021-03-06T04:31:29Z
dc.date.available 2021-03-06T04:31:29Z
dc.date.issued 2021-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163276
dc.description.abstract [EN] Non-uniform heating in structures under fire involves the appearance of 3D-phenomena and typically requires the use of complex models built with finite elements shell or solid. Although different procedures have been developed to model the complex thermo-mechanical phenomenon, there is no simple, accurate, and low-cost computational methodology involving the space-time variation of the temperature and displacement fields that opens the path advancing more easily towards modeling more complex structural problems in a fire situation. To overcome this knowledge-gap, this paper presents a new methodology that fulfills those conditions, making it possible to carry out more complex analyses that require many simulations in a short time and at low computational costs. The new methodology to obtain the thermo-mechanical response to non-uniform heating and mechanical loads is general, simple, accurate, and avoids using complex and high-cost finite elements, simplifying the structural modeling, and reducing the computational analysis cost. As a result, complex structural fire engineering problems such as probabilistic and optimization analysis can be handled much more easily, representing a significant step toward the generalized application of performance-based approaches to deal with fire effects on structures. The procedure uses simple but advanced Timoshenko¿s beam-type finite elements and represents the non-uniform temperature space-time field through a mean value of the temperature and the two mean values of the section thermal gradients which are variable in time during the fire. The methodology is satisfactorily validated with results (experimental and numerical) of the Cardington frame test and captures 3D-phenomena such as buckling, flexural-torsional buckling, and warping. es_ES
dc.description.sponsorship Thanks are due to the Fundación Carolina, the Universitat Politècnica de València, and the Universidad Surcolombiana for the support given to this research through the 2018-2019 Ph.D. scholarship. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Structures es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject New methodology es_ES
dc.subject Low-cost computational methodology es_ES
dc.subject Thermo-mechanical phenomenon es_ES
dc.subject Fire situation es_ES
dc.subject Non-uniform temperatures es_ES
dc.subject Cardington test es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.istruc.2021.02.008 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Pallares-Muñoz, MR.; Paya-Zaforteza, I.; Hospitaler Pérez, A. (2021). A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires. Structures. 31:462-483. https://doi.org/10.1016/j.istruc.2021.02.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.istruc.2021.02.008 es_ES
dc.description.upvformatpinicio 462 es_ES
dc.description.upvformatpfin 483 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.identifier.eissn 2352-0124 es_ES
dc.relation.pasarela S\427704 es_ES
dc.contributor.funder Fundación Carolina es_ES
dc.contributor.funder Universidad Surcolombiana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Shan, S., & Li, S. (2020). Fire-induced progressive collapse mechanisms of steel frames with partial infill walls. Structures, 25, 347-359. doi:10.1016/j.istruc.2020.03.023 es_ES
dc.description.references Shakib, H., Zakersalehi, M., Jahangiri, V., & Zamanian, R. (2020). Evaluation of Plasco Building fire-induced progressive collapse. Structures, 28, 205-224. doi:10.1016/j.istruc.2020.08.058 es_ES
dc.description.references Horová, K., Jána, T., & Wald, F. (2013). Temperature heterogeneity during travelling fire on experimental building. Advances in Engineering Software, 62-63, 119-130. doi:10.1016/j.advengsoft.2013.05.001 es_ES
dc.description.references Xu, L., & Zhuang, Y. (2012). Storey-based stability of unbraced steel frames at elevated temperature. Journal of Constructional Steel Research, 78, 79-87. doi:10.1016/j.jcsr.2012.06.010 es_ES
dc.description.references Jacques, L., Béchet, E., & Kerschen, G. (2017). Finite element model reduction for space thermal analysis. Finite Elements in Analysis and Design, 127, 6-15. doi:10.1016/j.finel.2017.01.001 es_ES
dc.description.references B.D. R, M. SK. Behaviour of steel columns with realistic boundary restraints under standard fire. Structures 2020;28:626–37. https://doi.org/https://doi.org/10.1016/j.istruc.2020.08.028. es_ES
dc.description.references Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Loma-Ossorio, E. (2019). Valencia bridge fire tests: Validation of simplified and advanced numerical approaches to model bridge fire scenarios. Advances in Engineering Software, 128, 55-68. doi:10.1016/j.advengsoft.2018.11.003 es_ES
dc.description.references Jeffers, A. E., & Beata, P. A. (2014). Generalized shell heat transfer element for modeling the thermal response of non-uniformly heated structures. Finite Elements in Analysis and Design, 83, 58-67. doi:10.1016/j.finel.2014.01.003 es_ES
dc.description.references Rigobello, R., Coda, H. B., & Munaiar Neto, J. (2014). A 3D solid-like frame finite element applied to steel structures under high temperatures. Finite Elements in Analysis and Design, 91, 68-83. doi:10.1016/j.finel.2014.07.005 es_ES
dc.description.references Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538-554. doi:10.1016/j.jcsr.2017.08.008 es_ES
dc.description.references Peris-Sayol, G., Paya-Zaforteza, I., Alos-Moya, J., & Hospitaler, A. (2015). Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios. Computers & Structures, 158, 333-345. doi:10.1016/j.compstruc.2015.06.003 es_ES
dc.description.references Quiel, S. E., Moreyra Garlock, M. E., & Paya-Zaforteza, I. (2011). Closed-Form Procedure for Predicting the Capacity and Demand of Steel Beam-Columns under Fire. Journal of Structural Engineering, 137(9), 967-976. doi:10.1061/(asce)st.1943-541x.0000443 es_ES
dc.description.references Davidson, M. T., Harik, I. E., & Davis, D. B. (2013). Fire Impact and Passive Fire Protection of Infrastructure: State of the Art. Journal of Performance of Constructed Facilities, 27(2), 135-143. doi:10.1061/(asce)cf.1943-5509.0000295 es_ES
dc.description.references Allam, A., Nassif, A., & Nadjai, A. (2019). Behaviour of restrained steel beam at elevated temperature – parametric studies. Journal of Structural Fire Engineering, 10(3), 324-339. doi:10.1108/jsfe-11-2018-0036 es_ES
dc.description.references Santiago A, Haremza C, Simões da Silva L, Rodrigues JP. Numerical behaviour of steel columns subject to localized fire loading. In: Topping BH V., Costa Neves LF, Barros RC, editors. Proc. Twelfth Int. Conf. Civil, Struct. Environ. Eng. Comput., Stirlingshire, Scotland: Civil-Comp Press; 2009. es_ES
dc.description.references Burges I, Alexandrou M. Composite beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. es_ES
dc.description.references Burges I, Alexandrou M. Steel beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. es_ES
dc.description.references Burgess I, Plank R, Shephered P. Vulcan 2019. es_ES
dc.description.references Santiago A, Haremza C, Lopes F, Franssen JM. Numerical behaviour of steel columns under localized fire loading. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Exp. Valid. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. es_ES
dc.description.references Franssen, J. M., Cooke, G. M. E., & Latham, D. J. (1995). Numerical simulation of a full scale fire test on a loaded steel framework. Journal of Constructional Steel Research, 35(3), 377-408. doi:10.1016/0143-974x(95)00010-s es_ES
dc.description.references Srivastava, G., & Ravi Prakash, P. (2017). An integrated framework for nonlinear analysis of plane frames exposed to fire using the direct stiffness method. Computers & Structures, 190, 173-185. doi:10.1016/j.compstruc.2017.05.013 es_ES
dc.description.references EN 1993-1-2. Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2005. es_ES
dc.description.references EN 1992-1-2. Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2004. es_ES
dc.description.references Purkiss JA, Li LY. Fire safety engineering design of structures. 3rd Editio. Boca Raton: CRC Press; 2013. https://doi.org/10.1201/b16059. es_ES
dc.description.references Ansys. ANSYS Engineering Analysis System. User manual. Canonsburg, Pensilvania: Houston, Pa. : Swanson Analysis Systems, 2019; 2019. es_ES
dc.description.references Oñate E. Structural Analysis with the Finite Element Method Linear Statics: Volume 2. Beams, Plates and Shells. 1st ed. Barcelona: Springer; 2013. es_ES
dc.description.references Magisano, D., Liguori, F., Leonetti, L., de Gregorio, D., Zuccaro, G., & Garcea, G. (2019). A quasi-static nonlinear analysis for assessing the fire resistance of reinforced concrete 3D frames exploiting time-dependent yield surfaces. Computers & Structures, 212, 327-342. doi:10.1016/j.compstruc.2018.11.005 es_ES
dc.description.references Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061. doi:10.1016/j.engstruct.2019.110061 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem