Mostrar el registro sencillo del ítem
dc.contributor.author | Pallares-Muñoz, Myriam R. | es_ES |
dc.contributor.author | Paya-Zaforteza, Ignacio | es_ES |
dc.contributor.author | Hospitaler Pérez, Antonio | es_ES |
dc.date.accessioned | 2021-03-06T04:31:29Z | |
dc.date.available | 2021-03-06T04:31:29Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163276 | |
dc.description.abstract | [EN] Non-uniform heating in structures under fire involves the appearance of 3D-phenomena and typically requires the use of complex models built with finite elements shell or solid. Although different procedures have been developed to model the complex thermo-mechanical phenomenon, there is no simple, accurate, and low-cost computational methodology involving the space-time variation of the temperature and displacement fields that opens the path advancing more easily towards modeling more complex structural problems in a fire situation. To overcome this knowledge-gap, this paper presents a new methodology that fulfills those conditions, making it possible to carry out more complex analyses that require many simulations in a short time and at low computational costs. The new methodology to obtain the thermo-mechanical response to non-uniform heating and mechanical loads is general, simple, accurate, and avoids using complex and high-cost finite elements, simplifying the structural modeling, and reducing the computational analysis cost. As a result, complex structural fire engineering problems such as probabilistic and optimization analysis can be handled much more easily, representing a significant step toward the generalized application of performance-based approaches to deal with fire effects on structures. The procedure uses simple but advanced Timoshenko¿s beam-type finite elements and represents the non-uniform temperature space-time field through a mean value of the temperature and the two mean values of the section thermal gradients which are variable in time during the fire. The methodology is satisfactorily validated with results (experimental and numerical) of the Cardington frame test and captures 3D-phenomena such as buckling, flexural-torsional buckling, and warping. | es_ES |
dc.description.sponsorship | Thanks are due to the Fundación Carolina, the Universitat Politècnica de València, and the Universidad Surcolombiana for the support given to this research through the 2018-2019 Ph.D. scholarship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Structures | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | New methodology | es_ES |
dc.subject | Low-cost computational methodology | es_ES |
dc.subject | Thermo-mechanical phenomenon | es_ES |
dc.subject | Fire situation | es_ES |
dc.subject | Non-uniform temperatures | es_ES |
dc.subject | Cardington test | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.istruc.2021.02.008 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Pallares-Muñoz, MR.; Paya-Zaforteza, I.; Hospitaler Pérez, A. (2021). A new methodology using beam elements for the analysis of steel frames subjected to non-uniform temperatures due to fires. Structures. 31:462-483. https://doi.org/10.1016/j.istruc.2021.02.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.istruc.2021.02.008 | es_ES |
dc.description.upvformatpinicio | 462 | es_ES |
dc.description.upvformatpfin | 483 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.identifier.eissn | 2352-0124 | es_ES |
dc.relation.pasarela | S\427704 | es_ES |
dc.contributor.funder | Fundación Carolina | es_ES |
dc.contributor.funder | Universidad Surcolombiana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Shan, S., & Li, S. (2020). Fire-induced progressive collapse mechanisms of steel frames with partial infill walls. Structures, 25, 347-359. doi:10.1016/j.istruc.2020.03.023 | es_ES |
dc.description.references | Shakib, H., Zakersalehi, M., Jahangiri, V., & Zamanian, R. (2020). Evaluation of Plasco Building fire-induced progressive collapse. Structures, 28, 205-224. doi:10.1016/j.istruc.2020.08.058 | es_ES |
dc.description.references | Horová, K., Jána, T., & Wald, F. (2013). Temperature heterogeneity during travelling fire on experimental building. Advances in Engineering Software, 62-63, 119-130. doi:10.1016/j.advengsoft.2013.05.001 | es_ES |
dc.description.references | Xu, L., & Zhuang, Y. (2012). Storey-based stability of unbraced steel frames at elevated temperature. Journal of Constructional Steel Research, 78, 79-87. doi:10.1016/j.jcsr.2012.06.010 | es_ES |
dc.description.references | Jacques, L., Béchet, E., & Kerschen, G. (2017). Finite element model reduction for space thermal analysis. Finite Elements in Analysis and Design, 127, 6-15. doi:10.1016/j.finel.2017.01.001 | es_ES |
dc.description.references | B.D. R, M. SK. Behaviour of steel columns with realistic boundary restraints under standard fire. Structures 2020;28:626–37. https://doi.org/https://doi.org/10.1016/j.istruc.2020.08.028. | es_ES |
dc.description.references | Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Loma-Ossorio, E. (2019). Valencia bridge fire tests: Validation of simplified and advanced numerical approaches to model bridge fire scenarios. Advances in Engineering Software, 128, 55-68. doi:10.1016/j.advengsoft.2018.11.003 | es_ES |
dc.description.references | Jeffers, A. E., & Beata, P. A. (2014). Generalized shell heat transfer element for modeling the thermal response of non-uniformly heated structures. Finite Elements in Analysis and Design, 83, 58-67. doi:10.1016/j.finel.2014.01.003 | es_ES |
dc.description.references | Rigobello, R., Coda, H. B., & Munaiar Neto, J. (2014). A 3D solid-like frame finite element applied to steel structures under high temperatures. Finite Elements in Analysis and Design, 91, 68-83. doi:10.1016/j.finel.2014.07.005 | es_ES |
dc.description.references | Alos-Moya, J., Paya-Zaforteza, I., Hospitaler, A., & Rinaudo, P. (2017). Valencia bridge fire tests: Experimental study of a composite bridge under fire. Journal of Constructional Steel Research, 138, 538-554. doi:10.1016/j.jcsr.2017.08.008 | es_ES |
dc.description.references | Peris-Sayol, G., Paya-Zaforteza, I., Alos-Moya, J., & Hospitaler, A. (2015). Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios. Computers & Structures, 158, 333-345. doi:10.1016/j.compstruc.2015.06.003 | es_ES |
dc.description.references | Quiel, S. E., Moreyra Garlock, M. E., & Paya-Zaforteza, I. (2011). Closed-Form Procedure for Predicting the Capacity and Demand of Steel Beam-Columns under Fire. Journal of Structural Engineering, 137(9), 967-976. doi:10.1061/(asce)st.1943-541x.0000443 | es_ES |
dc.description.references | Davidson, M. T., Harik, I. E., & Davis, D. B. (2013). Fire Impact and Passive Fire Protection of Infrastructure: State of the Art. Journal of Performance of Constructed Facilities, 27(2), 135-143. doi:10.1061/(asce)cf.1943-5509.0000295 | es_ES |
dc.description.references | Allam, A., Nassif, A., & Nadjai, A. (2019). Behaviour of restrained steel beam at elevated temperature – parametric studies. Journal of Structural Fire Engineering, 10(3), 324-339. doi:10.1108/jsfe-11-2018-0036 | es_ES |
dc.description.references | Santiago A, Haremza C, Simões da Silva L, Rodrigues JP. Numerical behaviour of steel columns subject to localized fire loading. In: Topping BH V., Costa Neves LF, Barros RC, editors. Proc. Twelfth Int. Conf. Civil, Struct. Environ. Eng. Comput., Stirlingshire, Scotland: Civil-Comp Press; 2009. | es_ES |
dc.description.references | Burges I, Alexandrou M. Composite beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. | es_ES |
dc.description.references | Burges I, Alexandrou M. Steel beams. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Verif. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. | es_ES |
dc.description.references | Burgess I, Plank R, Shephered P. Vulcan 2019. | es_ES |
dc.description.references | Santiago A, Haremza C, Lopes F, Franssen JM. Numerical behaviour of steel columns under localized fire loading. In: Ed. Wald F, Burgess I, Kwasniewski L, Horová K, Caldová E, editors. Benchmark Stud. Exp. Valid. Numer. Model. fire Eng. 1st ed., Prague: CTU Publishing House; 2014. | es_ES |
dc.description.references | Franssen, J. M., Cooke, G. M. E., & Latham, D. J. (1995). Numerical simulation of a full scale fire test on a loaded steel framework. Journal of Constructional Steel Research, 35(3), 377-408. doi:10.1016/0143-974x(95)00010-s | es_ES |
dc.description.references | Srivastava, G., & Ravi Prakash, P. (2017). An integrated framework for nonlinear analysis of plane frames exposed to fire using the direct stiffness method. Computers & Structures, 190, 173-185. doi:10.1016/j.compstruc.2017.05.013 | es_ES |
dc.description.references | EN 1993-1-2. Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2005. | es_ES |
dc.description.references | EN 1992-1-2. Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design. Brussels: European Committee for Standardization; 2004. | es_ES |
dc.description.references | Purkiss JA, Li LY. Fire safety engineering design of structures. 3rd Editio. Boca Raton: CRC Press; 2013. https://doi.org/10.1201/b16059. | es_ES |
dc.description.references | Ansys. ANSYS Engineering Analysis System. User manual. Canonsburg, Pensilvania: Houston, Pa. : Swanson Analysis Systems, 2019; 2019. | es_ES |
dc.description.references | Oñate E. Structural Analysis with the Finite Element Method Linear Statics: Volume 2. Beams, Plates and Shells. 1st ed. Barcelona: Springer; 2013. | es_ES |
dc.description.references | Magisano, D., Liguori, F., Leonetti, L., de Gregorio, D., Zuccaro, G., & Garcea, G. (2019). A quasi-static nonlinear analysis for assessing the fire resistance of reinforced concrete 3D frames exploiting time-dependent yield surfaces. Computers & Structures, 212, 327-342. doi:10.1016/j.compstruc.2018.11.005 | es_ES |
dc.description.references | Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061. doi:10.1016/j.engstruct.2019.110061 | es_ES |