- -

Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Min, Dai es_ES
dc.contributor.author Tang, Dunbing es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Salido, Miguel A. es_ES
dc.date.accessioned 2021-03-06T04:31:32Z
dc.date.available 2021-03-06T04:31:32Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0736-5845 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163277
dc.description.abstract [EN] Manufacturing enterprises nowadays face huge environmental challenges because of energy consumption and associated environmental impacts. One of the effective strategies to reduce energy consumption is by employing intelligent scheduling techniques. Production scheduling can have significant impact on energy saving in manufacturing system from the operation management point of view. Resource flexibility and complex constraints in flexible manufacturing system make production scheduling a complicated nonlinear programming problem. To this end, a multi-objective optimization model with the objective of minimizing energy consumption and makespan is formulated for a flexible job shop scheduling problem with transportation constraints. Then, an enhanced genetic algorithm is developed to solve the problem. Finally, comprehensive experiments are carried out to evaluate the performance of the proposed model and algorithm. The experimental results revealed that the proposed model and algorithm can solve the problem effectively and efficiently. This may provide a basis for the decision makers to consider energy-efficient scheduling in flexible manufacturing system. es_ES
dc.description.sponsorship This work was supported by the National Natural Science Foundation of China (NSFC) under Grant no. U1637211, Aeronautical Science Foundation of China under Grant no. 20161652015, the Fundamental Research Funds for the Central Universities under Grant no. NP2017105, Jiangsu Province Qing Lan Project, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant no. 17KJB460018, the Innovation Foundation for Science and Technology of Yangzhou University under Grant nos. 2016CXJ020 and 2017CXJ018, Science and Technology Project of Yangzhou under Grant no. YZ2017278, Research Topics of Teaching Reform of Yangzhou University under Grant YZUJX2018-28B, and the Spanish Government under the grants TIN2016-80856-R and TIN2015-65515-C4-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Robotics and Computer-Integrated Manufacturing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flexible job shop scheduling problems es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Energy consumption es_ES
dc.subject Genetic algorithm es_ES
dc.subject Transportation time es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.rcim.2019.04.006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//NP2017105/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Research of Jiangsu Higher Education Institutions of China//17KJB460018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//2016CXJ020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//2017CXJ018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Yangzhou Science and Technology Bureau//YZ2017278/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/YZU//YZUJX2018-28B/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//U1637211/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Aeronautical Science Foundation of China//20161652015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-80856-R/ES/TECNOLOGIAS INTELIGENTES PARA LA RESOLUCION CENTRALIZADA Y DISTRIBUIDA DE PROBLEMAS DE SCHEDULING SOSTENIBLE EN PROCESOS INDUSTRIALES Y LOGISTICOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Min, D.; Tang, D.; Giret Boggino, AS.; Salido, MA. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing. 59:143-157. https://doi.org/10.1016/j.rcim.2019.04.006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.rcim.2019.04.006 es_ES
dc.description.upvformatpinicio 143 es_ES
dc.description.upvformatpfin 157 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.relation.pasarela S\382541 es_ES
dc.contributor.funder Yangzhou University es_ES
dc.contributor.funder Yangzhou Science and Technology Bureau es_ES
dc.contributor.funder Aeronautical Science Foundation of China es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Fundamental Research Funds for the Central Universities es_ES
dc.contributor.funder Natural Science Research of Jiangsu Higher Education Institutions of China es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references EIA, U.S.Energy Information Administration. International Energy Outlook 2016. es_ES
dc.description.references Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060 es_ES
dc.description.references Apostolos, F., Alexios, P., Georgios, P., Panagiotis, S., & George, C. (2013). Energy Efficiency of Manufacturing Processes: A Critical Review. Procedia CIRP, 7, 628-633. doi:10.1016/j.procir.2013.06.044 es_ES
dc.description.references Peng, T., & Xu, X. (2014). Energy-efficient machining systems: a critical review. The International Journal of Advanced Manufacturing Technology, 72(9-12), 1389-1406. doi:10.1007/s00170-014-5756-0 es_ES
dc.description.references Moreira, L. C., Li, W. D., Lu, X., & Fitzpatrick, M. E. (2019). Energy-Efficient machining process analysis and optimisation based on BS EN24T alloy steel as case studies. Robotics and Computer-Integrated Manufacturing, 58, 1-12. doi:10.1016/j.rcim.2019.01.011 es_ES
dc.description.references Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452-464. doi:10.1016/j.rcim.2018.12.020 es_ES
dc.description.references Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017 es_ES
dc.description.references Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002 es_ES
dc.description.references Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100 es_ES
dc.description.references Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013 es_ES
dc.description.references Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236 es_ES
dc.description.references Yildirim, M. B., & Mouzon, G. (2012). Single-Machine Sustainable Production Planning to Minimize Total Energy Consumption and Total Completion Time Using a Multiple Objective Genetic Algorithm. IEEE Transactions on Engineering Management, 59(4), 585-597. doi:10.1109/tem.2011.2171055 es_ES
dc.description.references Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197-207. doi:10.1016/j.jclepro.2013.12.024 es_ES
dc.description.references Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004 es_ES
dc.description.references Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004 es_ES
dc.description.references Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flow shop scheduling with peak power consumption constraints. Annals of Operations Research, 206(1), 115-145. doi:10.1007/s10479-012-1294-z es_ES
dc.description.references Ding, J.-Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3), 758-771. doi:10.1016/j.ejor.2015.05.019 es_ES
dc.description.references Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788. doi:10.1016/j.ejor.2015.08.064 es_ES
dc.description.references Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011 es_ES
dc.description.references Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.084 es_ES
dc.description.references Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423-439. doi:10.1016/j.ijpe.2013.01.028 es_ES
dc.description.references Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543-1552. doi:10.1016/j.jclepro.2016.06.161 es_ES
dc.description.references Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001 es_ES
dc.description.references Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019 es_ES
dc.description.references May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248 es_ES
dc.description.references Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097 es_ES
dc.description.references Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0 es_ES
dc.description.references Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004 es_ES
dc.description.references Liu, Q., Zhan, M., Chekem, F. O., Shao, X., Ying, B., & Sutherland, J. W. (2017). A hybrid fruit fly algorithm for solving flexible job-shop scheduling to reduce manufacturing carbon footprint. Journal of Cleaner Production, 168, 668-678. doi:10.1016/j.jclepro.2017.09.037 es_ES
dc.description.references Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588. doi:10.1016/j.jclepro.2018.03.254 es_ES
dc.description.references Gong, G., Deng, Q., Gong, X., Liu, W., & Ren, Q. (2018). A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. Journal of Cleaner Production, 174, 560-576. doi:10.1016/j.jclepro.2017.10.188 es_ES
dc.description.references Rossi, A., & Dini, G. (2007). Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robotics and Computer-Integrated Manufacturing, 23(5), 503-516. doi:10.1016/j.rcim.2006.06.004 es_ES
dc.description.references Zhang, Q., Manier, H., & Manier, M.-A. (2013). A modified shifting bottleneck heuristic and disjunctive graph for job shop scheduling problems with transportation constraints. International Journal of Production Research, 52(4), 985-1002. doi:10.1080/00207543.2013.828164 es_ES
dc.description.references Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022 es_ES
dc.description.references He, Y., Li, Y., Wu, T., & Sutherland, J. W. (2015). An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 87, 245-254. doi:10.1016/j.jclepro.2014.10.006 es_ES
dc.description.references Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058 es_ES
dc.description.references Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021 es_ES
dc.description.references Liou, C.-D., & Hsieh, Y.-C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258-267. doi:10.1016/j.ijpe.2015.10.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem