Mostrar el registro sencillo del ítem
dc.contributor.author | Min, Dai | es_ES |
dc.contributor.author | Tang, Dunbing | es_ES |
dc.contributor.author | Giret Boggino, Adriana Susana | es_ES |
dc.contributor.author | Salido, Miguel A. | es_ES |
dc.date.accessioned | 2021-03-06T04:31:32Z | |
dc.date.available | 2021-03-06T04:31:32Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 0736-5845 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163277 | |
dc.description.abstract | [EN] Manufacturing enterprises nowadays face huge environmental challenges because of energy consumption and associated environmental impacts. One of the effective strategies to reduce energy consumption is by employing intelligent scheduling techniques. Production scheduling can have significant impact on energy saving in manufacturing system from the operation management point of view. Resource flexibility and complex constraints in flexible manufacturing system make production scheduling a complicated nonlinear programming problem. To this end, a multi-objective optimization model with the objective of minimizing energy consumption and makespan is formulated for a flexible job shop scheduling problem with transportation constraints. Then, an enhanced genetic algorithm is developed to solve the problem. Finally, comprehensive experiments are carried out to evaluate the performance of the proposed model and algorithm. The experimental results revealed that the proposed model and algorithm can solve the problem effectively and efficiently. This may provide a basis for the decision makers to consider energy-efficient scheduling in flexible manufacturing system. | es_ES |
dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China (NSFC) under Grant no. U1637211, Aeronautical Science Foundation of China under Grant no. 20161652015, the Fundamental Research Funds for the Central Universities under Grant no. NP2017105, Jiangsu Province Qing Lan Project, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant no. 17KJB460018, the Innovation Foundation for Science and Technology of Yangzhou University under Grant nos. 2016CXJ020 and 2017CXJ018, Science and Technology Project of Yangzhou under Grant no. YZ2017278, Research Topics of Teaching Reform of Yangzhou University under Grant YZUJX2018-28B, and the Spanish Government under the grants TIN2016-80856-R and TIN2015-65515-C4-1-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Robotics and Computer-Integrated Manufacturing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Flexible job shop scheduling problems | es_ES |
dc.subject | Multi-objective optimization | es_ES |
dc.subject | Energy consumption | es_ES |
dc.subject | Genetic algorithm | es_ES |
dc.subject | Transportation time | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.rcim.2019.04.006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//NP2017105/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Research of Jiangsu Higher Education Institutions of China//17KJB460018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/YZU//2016CXJ020/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/YZU//2017CXJ018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Yangzhou Science and Technology Bureau//YZ2017278/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/YZU//YZUJX2018-28B/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//U1637211/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Aeronautical Science Foundation of China//20161652015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-80856-R/ES/TECNOLOGIAS INTELIGENTES PARA LA RESOLUCION CENTRALIZADA Y DISTRIBUIDA DE PROBLEMAS DE SCHEDULING SOSTENIBLE EN PROCESOS INDUSTRIALES Y LOGISTICOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Min, D.; Tang, D.; Giret Boggino, AS.; Salido, MA. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing. 59:143-157. https://doi.org/10.1016/j.rcim.2019.04.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.rcim.2019.04.006 | es_ES |
dc.description.upvformatpinicio | 143 | es_ES |
dc.description.upvformatpfin | 157 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.relation.pasarela | S\382541 | es_ES |
dc.contributor.funder | Yangzhou University | es_ES |
dc.contributor.funder | Yangzhou Science and Technology Bureau | es_ES |
dc.contributor.funder | Aeronautical Science Foundation of China | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |
dc.contributor.funder | Natural Science Research of Jiangsu Higher Education Institutions of China | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | EIA, U.S.Energy Information Administration. International Energy Outlook 2016. | es_ES |
dc.description.references | Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060 | es_ES |
dc.description.references | Apostolos, F., Alexios, P., Georgios, P., Panagiotis, S., & George, C. (2013). Energy Efficiency of Manufacturing Processes: A Critical Review. Procedia CIRP, 7, 628-633. doi:10.1016/j.procir.2013.06.044 | es_ES |
dc.description.references | Peng, T., & Xu, X. (2014). Energy-efficient machining systems: a critical review. The International Journal of Advanced Manufacturing Technology, 72(9-12), 1389-1406. doi:10.1007/s00170-014-5756-0 | es_ES |
dc.description.references | Moreira, L. C., Li, W. D., Lu, X., & Fitzpatrick, M. E. (2019). Energy-Efficient machining process analysis and optimisation based on BS EN24T alloy steel as case studies. Robotics and Computer-Integrated Manufacturing, 58, 1-12. doi:10.1016/j.rcim.2019.01.011 | es_ES |
dc.description.references | Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452-464. doi:10.1016/j.rcim.2018.12.020 | es_ES |
dc.description.references | Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017 | es_ES |
dc.description.references | Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002 | es_ES |
dc.description.references | Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100 | es_ES |
dc.description.references | Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013 | es_ES |
dc.description.references | Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116. doi:10.1080/19397030802257236 | es_ES |
dc.description.references | Yildirim, M. B., & Mouzon, G. (2012). Single-Machine Sustainable Production Planning to Minimize Total Energy Consumption and Total Completion Time Using a Multiple Objective Genetic Algorithm. IEEE Transactions on Engineering Management, 59(4), 585-597. doi:10.1109/tem.2011.2171055 | es_ES |
dc.description.references | Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197-207. doi:10.1016/j.jclepro.2013.12.024 | es_ES |
dc.description.references | Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004 | es_ES |
dc.description.references | Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:10.1016/j.jmsy.2011.08.004 | es_ES |
dc.description.references | Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flow shop scheduling with peak power consumption constraints. Annals of Operations Research, 206(1), 115-145. doi:10.1007/s10479-012-1294-z | es_ES |
dc.description.references | Ding, J.-Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3), 758-771. doi:10.1016/j.ejor.2015.05.019 | es_ES |
dc.description.references | Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788. doi:10.1016/j.ejor.2015.08.064 | es_ES |
dc.description.references | Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011 | es_ES |
dc.description.references | Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459-462. doi:10.1016/j.cirp.2012.03.084 | es_ES |
dc.description.references | Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423-439. doi:10.1016/j.ijpe.2013.01.028 | es_ES |
dc.description.references | Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543-1552. doi:10.1016/j.jclepro.2016.06.161 | es_ES |
dc.description.references | Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001 | es_ES |
dc.description.references | Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019 | es_ES |
dc.description.references | May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248 | es_ES |
dc.description.references | Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097 | es_ES |
dc.description.references | Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0 | es_ES |
dc.description.references | Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004 | es_ES |
dc.description.references | Liu, Q., Zhan, M., Chekem, F. O., Shao, X., Ying, B., & Sutherland, J. W. (2017). A hybrid fruit fly algorithm for solving flexible job-shop scheduling to reduce manufacturing carbon footprint. Journal of Cleaner Production, 168, 668-678. doi:10.1016/j.jclepro.2017.09.037 | es_ES |
dc.description.references | Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588. doi:10.1016/j.jclepro.2018.03.254 | es_ES |
dc.description.references | Gong, G., Deng, Q., Gong, X., Liu, W., & Ren, Q. (2018). A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. Journal of Cleaner Production, 174, 560-576. doi:10.1016/j.jclepro.2017.10.188 | es_ES |
dc.description.references | Rossi, A., & Dini, G. (2007). Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimisation method. Robotics and Computer-Integrated Manufacturing, 23(5), 503-516. doi:10.1016/j.rcim.2006.06.004 | es_ES |
dc.description.references | Zhang, Q., Manier, H., & Manier, M.-A. (2013). A modified shifting bottleneck heuristic and disjunctive graph for job shop scheduling problems with transportation constraints. International Journal of Production Research, 52(4), 985-1002. doi:10.1080/00207543.2013.828164 | es_ES |
dc.description.references | Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022 | es_ES |
dc.description.references | He, Y., Li, Y., Wu, T., & Sutherland, J. W. (2015). An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 87, 245-254. doi:10.1016/j.jclepro.2014.10.006 | es_ES |
dc.description.references | Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058 | es_ES |
dc.description.references | Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021 | es_ES |
dc.description.references | Liou, C.-D., & Hsieh, Y.-C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258-267. doi:10.1016/j.ijpe.2015.10.002 | es_ES |