- -

Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor

Mostrar el registro completo del ítem

Vargas-Salgado, C.; Hurtado-Perez, E.; Alfonso-Solar, D.; Malmquist, A. (2021). Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor. Sustainability. 13(3):1-23. https://doi.org/10.3390/su13031061

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163281

Ficheros en el ítem

Metadatos del ítem

Título: Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor
Autor: Vargas-Salgado, Carlos Hurtado-Perez, Elias Alfonso-Solar, David Malmquist, Anders
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The methods currently used for designing a fluidized bed reactor in gasification plants do not meet an integrated methodology that optimizes all the different parameters for its sizing and operational regime. In the ...[+]
Palabras clave: Biomass , Gasification , Syngas , Bubbling fluidized bed , Renewable energy
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su13031061
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su13031061
Coste APC: 2000
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/730283/EU/Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments/
Agradecimientos:
This work was supported in part by the European Commission through GROW GREEN project (Agreement number: 730283-GROW GREEN-H2020-SCC-2016-2017/H2020-SCC-NBS2stage-2016. http://growgreenproject.eu/).
Tipo: Artículo

References

Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 1-9. doi:10.1155/2017/6478389

Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019). Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.9b01628

Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2014). CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106, 264-274. doi:10.1016/j.ces.2013.11.019 [+]
Anukam, A. I., Goso, B. P., Okoh, O. O., & Mamphweli, S. N. (2017). Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. Journal of Chemistry, 2017, 1-9. doi:10.1155/2017/6478389

Yang, S., Wang, H., Wei, Y., Hu, J., & Chew, J. W. (2019). Numerical Investigation of Bubble Dynamics during Biomass Gasification in a Bubbling Fluidized Bed. ACS Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.9b01628

Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2014). CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106, 264-274. doi:10.1016/j.ces.2013.11.019

Nilsson, S., Gómez-Barea, A., Fuentes-Cano, D., & Campoy, M. (2014). Gasification kinetics of char from olive tree pruning in fluidized bed. Fuel, 125, 192-199. doi:10.1016/j.fuel.2014.02.006

Fotovat, F., Abbasi, A., Spiteri, R. J., de Lasa, H., & Chaouki, J. (2015). A CPFD model for a bubbly biomass–sand fluidized bed. Powder Technology, 275, 39-50. doi:10.1016/j.powtec.2015.01.005

Sant’Anna, M. C. S., Cruz, W. R. dos S., Silva, G. F. da, Medronho, R. de A., & Lucena, S. (2017). Analyzing the fluidization of a gas-sand-biomass mixture using CFD techniques. Powder Technology, 316, 367-372. doi:10.1016/j.powtec.2016.12.023

Yang, S., Fan, F., Wei, Y., Hu, J., Wang, H., & Wu, S. (2020). Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier. Energy Conversion and Management, 210, 112689. doi:10.1016/j.enconman.2020.112689

Qi, T., Lei, T., Yan, B., Chen, G., Li, Z., Fatehi, H., … Bai, X.-S. (2019). Biomass steam gasification in bubbling fluidized bed for higher-H2 syngas: CFD simulation with coarse grain model. International Journal of Hydrogen Energy, 44(13), 6448-6460. doi:10.1016/j.ijhydene.2019.01.146

Lim, Y., & Lee, U.-D. (2014). Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Processing Technology, 128, 199-210. doi:10.1016/j.fuproc.2014.07.017

Xie, J., Zhong, W., Jin, B., Shao, Y., & Liu, H. (2012). Simulation on gasification of forestry residues in fluidized beds by Eulerian–Lagrangian approach. Bioresource Technology, 121, 36-46. doi:10.1016/j.biortech.2012.06.080

Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L.-A., & Moldestad, B. M. E. (2019). Detailed One-Dimensional Model for Steam-Biomass Gasification in a Bubbling Fluidized Bed. Energy & Fuels, 33(8), 7385-7397. doi:10.1021/acs.energyfuels.9b01340

Kang, P., Hu, X. E., Lu, Y., Wang, K., Zhang, R., Han, L., … Zhou, Y. J. (2020). Modeling and Optimization for Gas Distribution Patterns on Biomass Gasification Performance of a Bubbling Spout Fluidized Bed. Energy & Fuels, 34(2), 1750-1763. doi:10.1021/acs.energyfuels.9b02512

Soria-Verdugo, A., Von Berg, L., Serrano, D., Hochenauer, C., Scharler, R., & Anca-Couce, A. (2019). Effect of bed material density on the performance of steam gasification of biomass in bubbling fluidized beds. Fuel, 257, 116118. doi:10.1016/j.fuel.2019.116118

Mac an Bhaird, S. T., Hemmingway, P., Walsh, E., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2015). Bubbling fluidised bed gasification of wheat straw–gasifier performance using mullite as bed material. Chemical Engineering Research and Design, 97, 36-44. doi:10.1016/j.cherd.2015.03.010

Zaccariello, L., & Mastellone, M. (2015). Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies, 8(8), 8052-8068. doi:10.3390/en8088052

Mac an Bhaird, S. T., Walsh, E., Hemmingway, P., Maglinao, A. L., Capareda, S. C., & McDonnell, K. P. (2014). Analysis of bed agglomeration during gasification of wheat straw in a bubbling fluidised bed gasifier using mullite as bed material. Powder Technology, 254, 448-459. doi:10.1016/j.powtec.2014.01.049

Kuo, J.-H., Wey, M.-Y., Lian, Y.-H., & Samaksaman, U. (2014). Gaseous organic emissions during air gasification of woody waste: effect of bed agglomeration/defluidization. Fuel Processing Technology, 128, 104-110. doi:10.1016/j.fuproc.2014.07.008

Serrano, D., Sánchez-Delgado, S., Sobrino, C., & Marugán-Cruz, C. (2015). Defluidization and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology, 131, 338-347. doi:10.1016/j.fuproc.2014.11.036

Kittivech, T., & Fukuda, S. (2019). Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System. Energies, 13(1), 56. doi:10.3390/en13010056

Fanelli, E. (2020). CFD Hydrodynamics Investigations for Optimum Biomass Gasifier Design. Processes, 8(10), 1323. doi:10.3390/pr8101323

Karatas, H., & Akgun, F. (2018). Experimental results of gasification of walnut shell and pistachio shell in a bubbling fluidized bed gasifier under air and steam atmospheres. Fuel, 214, 285-292. doi:10.1016/j.fuel.2017.10.061

Meng, F., Ma, Q., Wang, H., Liu, Y., & Wang, D. (2019). Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel, 249, 112-118. doi:10.1016/j.fuel.2019.03.107

Vijay Kumar, K., Bharath, M., Raghavan, V., Prasad, B. V. S. S. S., Chakravarthy, S. R., & Sundararajan, T. (2017). Gasification of high-ash Indian coal in bubbling fluidized bed using air and steam – An experimental study. Applied Thermal Engineering, 116, 372-381. doi:10.1016/j.applthermaleng.2017.01.102

Aydar, E., Gul, S., Unlu, N., Akgun, F., & Livatyali, H. (2014). Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87(1), 35-42. doi:10.1016/j.joei.2014.02.004

Ren, J., Cao, J.-P., Zhao, X.-Y., Yang, F.-L., & Wei, X.-Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. doi:10.1016/j.rser.2019.109426

Koppatz, S., Pfeifer, C., & Hofbauer, H. (2011). Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal, 175, 468-483. doi:10.1016/j.cej.2011.09.071

Yang, S., Zhou, T., Wei, Y., Hu, J., & Wang, H. (2019). Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198, 111848. doi:10.1016/j.enconman.2019.111848

Rasmussen, N. B. K., & Aryal, N. (2020). Syngas production using straw pellet gasification in fluidized bed allothermal reactor under different temperature conditions. Fuel, 263, 116706. doi:10.1016/j.fuel.2019.116706

Xue, G., Kwapinska, M., Horvat, A., Kwapinski, W., Rabou, L. P. L. M., Dooley, S., … Leahy, J. J. (2014). Gasification of torrefied Miscanthus×giganteus in an air-blown bubbling fluidized bed gasifier. Bioresource Technology, 159, 397-403. doi:10.1016/j.biortech.2014.02.094

Sarker, S., Bimbela, F., Sánchez, J. L., & Nielsen, H. K. (2015). Characterization and pilot scale fluidized bed gasification of herbaceous biomass: A case study on alfalfa pellets. Energy Conversion and Management, 91, 451-458. doi:10.1016/j.enconman.2014.12.034

Zhou, T., Yang, S., Wei, Y., Hu, J., & Wang, H. (2020). Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier. Renewable Energy, 148, 534-547. doi:10.1016/j.renene.2019.10.059

González-Vázquez, M., García, R., Pevida, C., & Rubiera, F. (2017). Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies, 10(3), 306. doi:10.3390/en10030306

Prins, M. J., Ptasinski, K. J., & Janssen, F. J. J. G. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. doi:10.1016/j.energy.2006.03.008

Muvhiiwa, R., Kuvarega, A., Llana, E. M., & Muleja, A. (2019). Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes. Journal of Environmental Chemical Engineering, 7(5), 103391. doi:10.1016/j.jece.2019.103391

Pio, D. T., Tarelho, L. A. C., Tavares, A. M. A., Matos, M. A. A., & Silva, V. (2020). Co-gasification of refused derived fuel and biomass in a pilot-scale bubbling fluidized bed reactor. Energy Conversion and Management, 206, 112476. doi:10.1016/j.enconman.2020.112476

Aznar, M. P., Caballero, M. A., Sancho, J. A., & Francés, E. (2006). Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(5), 409-420. doi:10.1016/j.fuproc.2005.09.006

Cerone, N., Zimbardi, F., Contuzzi, L., Baleta, J., Cerinski, D., & Skvorčinskienė, R. (2020). Experimental investigation of syngas composition variation along updraft fixed bed gasifier. Energy Conversion and Management, 221, 113116. doi:10.1016/j.enconman.2020.113116

Khezri, R., Wan Ab Karim Ghani, W. A., Awang Biak, D. R., Yunus, R., & Silas, K. (2019). Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor. Energies, 12(8), 1517. doi:10.3390/en12081517

Ge, H., Zhang, H., Guo, W., Song, T., & Shen, L. (2019). System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, 241, 118-128. doi:10.1016/j.fuel.2018.11.091

Kim, Y. D., Yang, C. W., Kim, B. J., Kim, K. S., Lee, J. W., Moon, J. H., … Lee, U. D. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 112, 414-420. doi:10.1016/j.apenergy.2013.03.072

Puig-Arnavat, M., Tora, E. A., Bruno, J. C., & Coronas, A. (2013). State of the art on reactor designs for solar gasification of carbonaceous feedstock. Solar Energy, 97, 67-84. doi:10.1016/j.solener.2013.08.001

Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi:10.1016/j.rser.2014.07.129

Susastriawan, A. A. P., Saptoadi, H., & Purnomo. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989-1003. doi:10.1016/j.rser.2017.03.112

Marchelli, F., Curti, M., Tognin, M., Rovero, G., Moliner, C., Arato, E., & Bosio, B. (2020). Experimental Study on the Solids Residence Time Distribution in Multiple Square-Based Spouted Beds. Energies, 13(18), 4694. doi:10.3390/en13184694

Guran, S. (2020). Thermochemical Conversion of Biomass. Practices and Perspectives in Sustainable Bioenergy, 159-194. doi:10.1007/978-81-322-3965-9_8

Hernández, J. J., Lapuerta, M., & Barba, J. (2016). Separate effect of H 2 , CH 4 and CO on diesel engine performance and emissions under partial diesel fuel replacement. Fuel, 165, 173-184. doi:10.1016/j.fuel.2015.10.054

Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030

Montuori, L., Vargas-Salgado, C., & Alcázar-Ortega, M. (2015). Impact of the throat sizing on the operating parameters in an experimental fixed bed gasifier: Analysis, evaluation and testing. Renewable Energy, 83, 615-625. doi:10.1016/j.renene.2015.04.068

Alfonso-Solar, D., Vargas-Salgado, C., Sánchez-Díaz, C., & Hurtado-Pérez, E. (2020). Small-Scale Hybrid Photovoltaic-Biomass Systems Feasibility Analysis for Higher Education Buildings. Sustainability, 12(21), 9300. doi:10.3390/su12219300

Narváez, I., Orío, A., Aznar, M. P., & Corella, J. (1996). Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of the Produced Raw Gas. Industrial & Engineering Chemistry Research, 35(7), 2110-2120. doi:10.1021/ie9507540

Siedlecki, M., De Jong, W., & Verkooijen, A. H. M. (2011). Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies, 4(3), 389-434. doi:10.3390/en4030389

Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), 285-292. doi:10.1016/0032-5910(73)80037-3

Kumar, A., Jones, D., & Hanna, M. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3), 556-581. doi:10.3390/en20300556

“IMERYS” https://imerys-refractoryminerals.com/europe-cis-mena/products/molochite/

Wen, C. Y., & Yu, Y. H. (1966). A generalized method for predicting the minimum fluidization velocity. AIChE Journal, 12(3), 610-612. doi:10.1002/aic.690120343

Chirone, R., Poletto, M., Barletta, D., & Lettieri, P. (2020). The effect of temperature on the minimum fluidization conditions of industrial cohesive particles. Powder Technology, 362, 307-322. doi:10.1016/j.powtec.2019.11.102

Lim, M. T., & Alimuddin, Z. (2008). Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis. Renewable Energy, 33(10), 2339-2343. doi:10.1016/j.renene.2008.01.014

Gómez-Barea, A., Ollero, P., & Leckner, B. (2013). Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 103, 42-52. doi:10.1016/j.fuel.2011.04.042

Gómez-Barea, A., & Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science, 36(4), 444-509. doi:10.1016/j.pecs.2009.12.002

Shi, L., & Northwood, D. O. (1995). The mechanical behavior of an aisi type 310 stainless steel. Acta Metallurgica et Materialia, 43(2), 453-460. doi:10.1016/0956-7151(94)00279-q

Lao, C., & Chungpaibulpatana, S. (2017). Techno-economic analysis of hybrid system for rural electrification in Cambodia. Energy Procedia, 138, 524-529. doi:10.1016/j.egypro.2017.10.239

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem