- -

Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Buitrago, Manuel es_ES
dc.contributor.author Bertolesi, Elisa es_ES
dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.contributor.author Adam, Jose M es_ES
dc.date.accessioned 2021-03-06T04:31:42Z
dc.date.available 2021-03-06T04:31:42Z
dc.date.issued 2021-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163283
dc.description.abstract [EN] This study aimed to experimentally analyse the robustness of riveted steel bridges based on truss-type structures and to define practical recommendations for early detection of local failures before they cause progressive structural collapse. Although there are many experimental studies on robustness and progressive collapse on buildings, those on bridges are either theoretical or deal with actual collapses. This paper describes a unique case of a 21m full-scale bridge span tested under laboratory conditions with an extensive monitoring system, together with an experimental study to evaluate structural behaviour and robustness as damage or failure progressed in its elements. A linear-static finite-element analysis was also included to examine other possible causes not included in the experiment. The results proved the structural redundancy of this type of truss structure based on the joints¿ resistance to bending moments and gave rise to a series of practical structural health recommendations to identify early failures and avoid progressive or sudden bridge collapse. The study carried out and the recommendations it produced are now being applied in three similar bridge case studies. es_ES
dc.description.sponsorship We would like to express our gratitude to the FGV (Ferrocarrils de la Generalitat Valenciana) and FCC Construcción S.A., CHM Obras e Infraestructuras S.A., Contratas y Ventas S.A. and CALSENS S.L. for giving us the opportunity to test a bridge at the ICITECH facilities, also to Juan Antonio García Cerezo, of FGV, for his invaluable cooperation and recommendations. We also wish to show our gratitude for the magnificent work on the bridge by Jesús Martínez, Eduardo Luengo and Daniel Tasquer. The tests on the bridge meant that much of the Structures Laboratory was out of service for other work, for which we owe a debt of gratitude to our ICITECH colleagues for their infinite patience and understanding. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Robustness es_ES
dc.subject Experimental test es_ES
dc.subject Structural health monitoring es_ES
dc.subject Progressive collapse es_ES
dc.subject Steel truss bridges es_ES
dc.subject Riveted joints es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.istruc.2020.12.005 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FJCI-2018-38071/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RED2018-102456-T/ES/MANTENIMIENTO Y CONSERVACION DEL PATRIMONIO CONSTRUIDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Buitrago, M.; Bertolesi, E.; Calderón García, PA.; Adam, JM. (2021). Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span. Structures. 29:691-700. https://doi.org/10.1016/j.istruc.2020.12.005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.istruc.2020.12.005 es_ES
dc.description.upvformatpinicio 691 es_ES
dc.description.upvformatpfin 700 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.identifier.eissn 2352-0124 es_ES
dc.relation.pasarela S\422737 es_ES
dc.contributor.funder SACYR, S.A. es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Calculo y Estructuras Sensadas S. L. es_ES
dc.description.references Ghali, A., & Tadros, G. (1997). Bridge Progressive Collapse Vulnerability. Journal of Structural Engineering, 123(2), 227-231. doi:10.1061/(asce)0733-9445(1997)123:2(227) es_ES
dc.description.references Cha, E. J., & Ellingwood, B. R. (2012). Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliability Engineering & System Safety, 104, 27-35. doi:10.1016/j.ress.2012.04.002 es_ES
dc.description.references Zhuang, M., & Miao, C. (2020). RETRACTED: Fatigue reliability assessment for hangers of a special-shaped CFST arch bridge. Structures, 28, 235-250. doi:10.1016/j.istruc.2020.08.067 es_ES
dc.description.references Starossek, U. (2009). Avoiding Disproportionate Collapse of Major Bridges. Structural Engineering International, 19(3), 289-297. doi:10.2749/101686609788957838 es_ES
dc.description.references Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011 es_ES
dc.description.references Bontempi, F. (2019). Elementary concepts of structural robustness of bridges and viaducts. Journal of Civil Structural Health Monitoring, 9(5), 703-717. doi:10.1007/s13349-019-00362-7 es_ES
dc.description.references Deng, L., Wang, W., & Yu, Y. (2016). State-of-the-Art Review on the Causes and Mechanisms of Bridge Collapse. Journal of Performance of Constructed Facilities, 30(2), 04015005. doi:10.1061/(asce)cf.1943-5509.0000731 es_ES
dc.description.references Bi, K., Ren, W.-X., Cheng, P.-F., & Hao, H. (2015). Domino-type progressive collapse analysis of a multi-span simply-supported bridge: A case study. Engineering Structures, 90, 172-182. doi:10.1016/j.engstruct.2015.02.023 es_ES
dc.description.references Rania, N., Coppola, I., Martorana, F., & Migliorini, L. (2019). The Collapse of the Morandi Bridge in Genoa on 14 August 2018: A Collective Traumatic Event and Its Emotional Impact Linked to the Place and Loss of a Symbol. Sustainability, 11(23), 6822. doi:10.3390/su11236822 es_ES
dc.description.references Buitrago, M., Sagaseta, J., & Adam, J. M. (2020). Avoiding failures during building construction using structural fuses as load limiters on temporary shoring structures. Engineering Structures, 204, 109906. doi:10.1016/j.engstruct.2019.109906 es_ES
dc.description.references Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 es_ES
dc.description.references Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414 es_ES
dc.description.references Alshaikh, I. M. H., Bakar, B. H. A., Alwesabi, E. A. H., & Akil, H. M. (2020). Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, 25, 881-900. doi:10.1016/j.istruc.2020.03.018 es_ES
dc.description.references Fu, Q., & Tan, K.-H. (2019). Numerical study on steel-concrete composite floor systems under corner column removal scenario. Structures, 21, 33-44. doi:10.1016/j.istruc.2019.06.003 es_ES
dc.description.references Mucedero, G., Brunesi, E., & Parisi, F. (2020). Nonlinear material modelling for fibre-based progressive collapse analysis of RC framed buildings. Engineering Failure Analysis, 118, 104901. doi:10.1016/j.engfailanal.2020.104901 es_ES
dc.description.references Bao, Y., Main, J. A., & Noh, S.-Y. (2017). Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings. Journal of Structural Engineering, 143(8), 04017066. doi:10.1061/(asce)st.1943-541x.0001795 es_ES
dc.description.references Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056 es_ES
dc.description.references Wang, M. R., & Zhou, Z. J. (2012). Progressive Collapse and Structural Robustness of Bridges. Applied Mechanics and Materials, 193-194, 1021-1024. doi:10.4028/www.scientific.net/amm.193-194.1021 es_ES
dc.description.references Jiang, H., Wang, J., Chorzepa, M. G., & Zhao, J. (2017). Numerical Investigation of Progressive Collapse of a Multispan Continuous Bridge Subjected to Vessel Collision. Journal of Bridge Engineering, 22(5), 04017008. doi:10.1061/(asce)be.1943-5592.0001037 es_ES
dc.description.references Miyachi, K., Nakamura, S., & Manda, A. (2012). Progressive collapse analysis of steel truss bridges and evaluation of ductility. Journal of Constructional Steel Research, 78, 192-200. doi:10.1016/j.jcsr.2012.06.015 es_ES
dc.description.references Khuyen, H. T., & Iwasaki, E. (2016). An approximate method of dynamic amplification factor for alternate load path in redundancy and progressive collapse linear static analysis for steel truss bridges. Case Studies in Structural Engineering, 6, 53-62. doi:10.1016/j.csse.2016.06.001 es_ES
dc.description.references Trong Khuyen, H., & Eiji, I. (2017). Linear Redundancy Analysis Method Considering Plastic Region for Steel Truss Bridges. Journal of Bridge Engineering, 22(3), 05016011. doi:10.1061/(asce)be.1943-5592.0000999 es_ES
dc.description.references Garavaglia, E., & Sgambi, L. (2016). Selective maintenance planning of a steel truss bridge based on the Markovian approach. Engineering Structures, 125, 532-545. doi:10.1016/j.engstruct.2016.06.055 es_ES
dc.description.references Olmati, P., Gkoumas, K., Brando, F., & Cao, L. (2013). Consequence-based robustness assessment of a steel truss bridge. Steel & Composite structures, 14(4), 379-395. doi:10.12989/scs.2013.14.4.379 es_ES
dc.description.references Azizinamini, A. (2002). Full scale testing of old steel truss bridge. Journal of Constructional Steel Research, 58(5-8), 843-858. doi:10.1016/s0143-974x(01)00096-7 es_ES
dc.description.references Sagaseta, J., Olmati, P., Micallef, K., & Cormie, D. (2017). Punching shear failure in blast-loaded RC slabs and panels. Engineering Structures, 147, 177-194. doi:10.1016/j.engstruct.2017.04.051 es_ES
dc.description.references ABAQUS v16.4. Abaqus, Theory manual 2016. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem