Mostrar el registro sencillo del ítem
dc.contributor.author | Buitrago, Manuel | es_ES |
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Calderón García, Pedro Antonio | es_ES |
dc.contributor.author | Adam, Jose M | es_ES |
dc.date.accessioned | 2021-03-06T04:31:42Z | |
dc.date.available | 2021-03-06T04:31:42Z | |
dc.date.issued | 2021-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163283 | |
dc.description.abstract | [EN] This study aimed to experimentally analyse the robustness of riveted steel bridges based on truss-type structures and to define practical recommendations for early detection of local failures before they cause progressive structural collapse. Although there are many experimental studies on robustness and progressive collapse on buildings, those on bridges are either theoretical or deal with actual collapses. This paper describes a unique case of a 21m full-scale bridge span tested under laboratory conditions with an extensive monitoring system, together with an experimental study to evaluate structural behaviour and robustness as damage or failure progressed in its elements. A linear-static finite-element analysis was also included to examine other possible causes not included in the experiment. The results proved the structural redundancy of this type of truss structure based on the joints¿ resistance to bending moments and gave rise to a series of practical structural health recommendations to identify early failures and avoid progressive or sudden bridge collapse. The study carried out and the recommendations it produced are now being applied in three similar bridge case studies. | es_ES |
dc.description.sponsorship | We would like to express our gratitude to the FGV (Ferrocarrils de la Generalitat Valenciana) and FCC Construcción S.A., CHM Obras e Infraestructuras S.A., Contratas y Ventas S.A. and CALSENS S.L. for giving us the opportunity to test a bridge at the ICITECH facilities, also to Juan Antonio García Cerezo, of FGV, for his invaluable cooperation and recommendations. We also wish to show our gratitude for the magnificent work on the bridge by Jesús Martínez, Eduardo Luengo and Daniel Tasquer. The tests on the bridge meant that much of the Structures Laboratory was out of service for other work, for which we owe a debt of gratitude to our ICITECH colleagues for their infinite patience and understanding. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | Experimental test | es_ES |
dc.subject | Structural health monitoring | es_ES |
dc.subject | Progressive collapse | es_ES |
dc.subject | Steel truss bridges | es_ES |
dc.subject | Riveted joints | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.istruc.2020.12.005 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//FJCI-2018-38071/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RED2018-102456-T/ES/MANTENIMIENTO Y CONSERVACION DEL PATRIMONIO CONSTRUIDO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Buitrago, M.; Bertolesi, E.; Calderón García, PA.; Adam, JM. (2021). Robustness of steel truss bridges: laboratory testing of a full-scale 21-metre bridge span. Structures. 29:691-700. https://doi.org/10.1016/j.istruc.2020.12.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.istruc.2020.12.005 | es_ES |
dc.description.upvformatpinicio | 691 | es_ES |
dc.description.upvformatpfin | 700 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.identifier.eissn | 2352-0124 | es_ES |
dc.relation.pasarela | S\422737 | es_ES |
dc.contributor.funder | SACYR, S.A. | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Calculo y Estructuras Sensadas S. L. | es_ES |
dc.description.references | Ghali, A., & Tadros, G. (1997). Bridge Progressive Collapse Vulnerability. Journal of Structural Engineering, 123(2), 227-231. doi:10.1061/(asce)0733-9445(1997)123:2(227) | es_ES |
dc.description.references | Cha, E. J., & Ellingwood, B. R. (2012). Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliability Engineering & System Safety, 104, 27-35. doi:10.1016/j.ress.2012.04.002 | es_ES |
dc.description.references | Zhuang, M., & Miao, C. (2020). RETRACTED: Fatigue reliability assessment for hangers of a special-shaped CFST arch bridge. Structures, 28, 235-250. doi:10.1016/j.istruc.2020.08.067 | es_ES |
dc.description.references | Starossek, U. (2009). Avoiding Disproportionate Collapse of Major Bridges. Structural Engineering International, 19(3), 289-297. doi:10.2749/101686609788957838 | es_ES |
dc.description.references | Russell, J. M., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2019). Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures, 20, 365-373. doi:10.1016/j.istruc.2019.04.011 | es_ES |
dc.description.references | Bontempi, F. (2019). Elementary concepts of structural robustness of bridges and viaducts. Journal of Civil Structural Health Monitoring, 9(5), 703-717. doi:10.1007/s13349-019-00362-7 | es_ES |
dc.description.references | Deng, L., Wang, W., & Yu, Y. (2016). State-of-the-Art Review on the Causes and Mechanisms of Bridge Collapse. Journal of Performance of Constructed Facilities, 30(2), 04015005. doi:10.1061/(asce)cf.1943-5509.0000731 | es_ES |
dc.description.references | Bi, K., Ren, W.-X., Cheng, P.-F., & Hao, H. (2015). Domino-type progressive collapse analysis of a multi-span simply-supported bridge: A case study. Engineering Structures, 90, 172-182. doi:10.1016/j.engstruct.2015.02.023 | es_ES |
dc.description.references | Rania, N., Coppola, I., Martorana, F., & Migliorini, L. (2019). The Collapse of the Morandi Bridge in Genoa on 14 August 2018: A Collective Traumatic Event and Its Emotional Impact Linked to the Place and Loss of a Symbol. Sustainability, 11(23), 6822. doi:10.3390/su11236822 | es_ES |
dc.description.references | Buitrago, M., Sagaseta, J., & Adam, J. M. (2020). Avoiding failures during building construction using structural fuses as load limiters on temporary shoring structures. Engineering Structures, 204, 109906. doi:10.1016/j.engstruct.2019.109906 | es_ES |
dc.description.references | Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 | es_ES |
dc.description.references | Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414 | es_ES |
dc.description.references | Alshaikh, I. M. H., Bakar, B. H. A., Alwesabi, E. A. H., & Akil, H. M. (2020). Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, 25, 881-900. doi:10.1016/j.istruc.2020.03.018 | es_ES |
dc.description.references | Fu, Q., & Tan, K.-H. (2019). Numerical study on steel-concrete composite floor systems under corner column removal scenario. Structures, 21, 33-44. doi:10.1016/j.istruc.2019.06.003 | es_ES |
dc.description.references | Mucedero, G., Brunesi, E., & Parisi, F. (2020). Nonlinear material modelling for fibre-based progressive collapse analysis of RC framed buildings. Engineering Failure Analysis, 118, 104901. doi:10.1016/j.engfailanal.2020.104901 | es_ES |
dc.description.references | Bao, Y., Main, J. A., & Noh, S.-Y. (2017). Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings. Journal of Structural Engineering, 143(8), 04017066. doi:10.1061/(asce)st.1943-541x.0001795 | es_ES |
dc.description.references | Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056 | es_ES |
dc.description.references | Wang, M. R., & Zhou, Z. J. (2012). Progressive Collapse and Structural Robustness of Bridges. Applied Mechanics and Materials, 193-194, 1021-1024. doi:10.4028/www.scientific.net/amm.193-194.1021 | es_ES |
dc.description.references | Jiang, H., Wang, J., Chorzepa, M. G., & Zhao, J. (2017). Numerical Investigation of Progressive Collapse of a Multispan Continuous Bridge Subjected to Vessel Collision. Journal of Bridge Engineering, 22(5), 04017008. doi:10.1061/(asce)be.1943-5592.0001037 | es_ES |
dc.description.references | Miyachi, K., Nakamura, S., & Manda, A. (2012). Progressive collapse analysis of steel truss bridges and evaluation of ductility. Journal of Constructional Steel Research, 78, 192-200. doi:10.1016/j.jcsr.2012.06.015 | es_ES |
dc.description.references | Khuyen, H. T., & Iwasaki, E. (2016). An approximate method of dynamic amplification factor for alternate load path in redundancy and progressive collapse linear static analysis for steel truss bridges. Case Studies in Structural Engineering, 6, 53-62. doi:10.1016/j.csse.2016.06.001 | es_ES |
dc.description.references | Trong Khuyen, H., & Eiji, I. (2017). Linear Redundancy Analysis Method Considering Plastic Region for Steel Truss Bridges. Journal of Bridge Engineering, 22(3), 05016011. doi:10.1061/(asce)be.1943-5592.0000999 | es_ES |
dc.description.references | Garavaglia, E., & Sgambi, L. (2016). Selective maintenance planning of a steel truss bridge based on the Markovian approach. Engineering Structures, 125, 532-545. doi:10.1016/j.engstruct.2016.06.055 | es_ES |
dc.description.references | Olmati, P., Gkoumas, K., Brando, F., & Cao, L. (2013). Consequence-based robustness assessment of a steel truss bridge. Steel & Composite structures, 14(4), 379-395. doi:10.12989/scs.2013.14.4.379 | es_ES |
dc.description.references | Azizinamini, A. (2002). Full scale testing of old steel truss bridge. Journal of Constructional Steel Research, 58(5-8), 843-858. doi:10.1016/s0143-974x(01)00096-7 | es_ES |
dc.description.references | Sagaseta, J., Olmati, P., Micallef, K., & Cormie, D. (2017). Punching shear failure in blast-loaded RC slabs and panels. Engineering Structures, 147, 177-194. doi:10.1016/j.engstruct.2017.04.051 | es_ES |
dc.description.references | ABAQUS v16.4. Abaqus, Theory manual 2016. | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |