Mostrar el registro sencillo del ítem
dc.contributor.author | Hafez, Hisham | es_ES |
dc.contributor.author | Kurda, Rawaz | es_ES |
dc.contributor.author | Al-Ayish, Nadia | es_ES |
dc.contributor.author | García-Segura, Tatiana | es_ES |
dc.contributor.author | Cheung,Wai Ming | es_ES |
dc.contributor.author | Nagaratnam, Brabha | es_ES |
dc.date.accessioned | 2021-03-06T04:31:57Z | |
dc.date.available | 2021-03-06T04:31:57Z | |
dc.date.issued | 2021-04-10 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163288 | |
dc.description.abstract | [EN] Concrete is the primary building material worldwide with a substantial impact on the built environment sustainability. Hence, it is necessary to assess concrete¿s combined functionality, economic and environmental impact. In this paper, two concrete sustainability assessment frameworks, MARS-SC and CONCRETop, were studied. Building on the identified gaps, a new framework, ECO2 was developed. ECO2 is a multi-criteria decision analysis framework that accounts for carbon sequestration of concrete, impact allocation of raw materials, and the impact from the use and end-of-life phases. Hence, it could be used to optimize the proportions of a concrete mix based on a user-defined sustainability objective. A case study concluded that, due to the whole life cycle scope, the environmental impact calculated through ECO2 is 20% higher than that by MARS-SC and CONCRETop. In case of reinforced concrete, where service life requirements are different, the ranking of the alternatives according to ECO2 will significantly change comparatively. | es_ES |
dc.description.sponsorship | The authors acknowledge no conflict of interest. This work is funded by the Faculty of Engineering and Environment's research development fund (RDF) at Northumbria University, UK. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Concrete | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Life cycle assessment | es_ES |
dc.subject | MCDA | es_ES |
dc.subject | Framework | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | A whole life cycle performance-based ECOnomic and ECOlogical assessment framework (ECO2) for concrete sustainability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2021.126060 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Hafez, H.; Kurda, R.; Al-Ayish, N.; García-Segura, T.; Cheung, WM.; Nagaratnam, B. (2021). A whole life cycle performance-based ECOnomic and ECOlogical assessment framework (ECO2) for concrete sustainability. Journal of Cleaner Production. 292:1-13. https://doi.org/10.1016/j.jclepro.2021.126060 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2021.126060 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 292 | es_ES |
dc.relation.pasarela | S\426862 | es_ES |
dc.contributor.funder | Northumbria University | es_ES |
dc.description.references | Al-Ayish, N., During, O., Malaga, K., Silva, N., & Gudmundsson, K. (2018). The influence of supplementary cementitious materials on climate impact of concrete bridges exposed to chlorides. Construction and Building Materials, 188, 391-398. doi:10.1016/j.conbuildmat.2018.08.132 | es_ES |
dc.description.references | Alexander, M., & Thomas, M. (2015). Service life prediction and performance testing — Current developments and practical applications. Cement and Concrete Research, 78, 155-164. doi:10.1016/j.cemconres.2015.05.013 | es_ES |
dc.description.references | Alexander, M. G., Ballim, Y., & Stanish, K. (2007). A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures. Materials and Structures, 41(5), 921-936. doi:10.1617/s11527-007-9295-0 | es_ES |
dc.description.references | Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 67, 408-416. doi:10.1016/j.rser.2016.09.058 | es_ES |
dc.description.references | Bragança, L., Mateus, R., & Koukkari, H. (2010). Building Sustainability Assessment. Sustainability, 2(7), 2010-2023. doi:10.3390/su2072010 | es_ES |
dc.description.references | Chandwani, V., Agrawal, V., & Nagar, R. (2015). Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Systems with Applications, 42(2), 885-893. doi:10.1016/j.eswa.2014.08.048 | es_ES |
dc.description.references | Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54(12), 1231-1240. doi:10.1016/j.resconrec.2010.04.001 | es_ES |
dc.description.references | Cheng, S., Shui, Z., Yu, R., Zhang, X., & Zhu, S. (2018). Durability and environment evaluation of an eco-friendly cement-based material incorporating recycled chromium containing slag. Journal of Cleaner Production, 185, 23-31. doi:10.1016/j.jclepro.2018.03.048 | es_ES |
dc.description.references | Cinelli, M., Coles, S. R., & Kirwan, K. (2014). Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators, 46, 138-148. doi:10.1016/j.ecolind.2014.06.011 | es_ES |
dc.description.references | Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings, 8(5), 70. doi:10.3390/buildings8050070 | es_ES |
dc.description.references | Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549-556. doi:10.1007/s11367-010-0191-4 | es_ES |
dc.description.references | Del Borghi, A. (2012). LCA and communication: Environmental Product Declaration. The International Journal of Life Cycle Assessment, 18(2), 293-295. doi:10.1007/s11367-012-0513-9 | es_ES |
dc.description.references | Densley Tingley, D., & Davison, B. (2012). Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Building and Environment, 57, 387-395. doi:10.1016/j.buildenv.2012.06.005 | es_ES |
dc.description.references | Ding, T., Xiao, J., & Tam, V. W. Y. (2016). A closed-loop life cycle assessment of recycled aggregate concrete utilization in China. Waste Management, 56, 367-375. doi:10.1016/j.wasman.2016.05.031 | es_ES |
dc.description.references | Dobbelaere, G., de Brito, J., & Evangelista, L. (2016). Definition of an equivalent functional unit for structural concrete incorporating recycled aggregates. Engineering Structures, 122, 196-208. doi:10.1016/j.engstruct.2016.04.055 | es_ES |
dc.description.references | Felekoğlu, B., Türkel, S., & Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4), 1795-1802. doi:10.1016/j.buildenv.2006.01.012 | es_ES |
dc.description.references | Gao, T., Liu, Q., & Wang, J. (2013). A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies, 9(3), 237-243. doi:10.1093/ijlct/ctt041 | es_ES |
dc.description.references | Garcia, V., François, R., Carcasses, M., & Gegout, P. (2013). Potential measurement to determine the chloride threshold concentration that initiates corrosion of reinforcing steel bar in slag concretes. Materials and Structures, 47(9), 1483-1499. doi:10.1617/s11527-013-0130-5 | es_ES |
dc.description.references | García-Segura, T., Yepes, V., & Alcalá, J. (2013). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3-12. doi:10.1007/s11367-013-0614-0 | es_ES |
dc.description.references | Gursel, A. P., & Ostertag, C. P. (2016). Impact of Singapore’s importers on life-cycle assessment of concrete. Journal of Cleaner Production, 118, 140-150. doi:10.1016/j.jclepro.2016.01.051 | es_ES |
dc.description.references | Habert, G., d’ Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 19(11), 1229-1238. doi:10.1016/j.jclepro.2011.03.012 | es_ES |
dc.description.references | Hafez, Kurda, Cheung, & Nagaratnam. (2019). A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete. Applied Sciences, 9(22), 4803. doi:10.3390/app9224803 | es_ES |
dc.description.references | Häfliger, I.-F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805-816. doi:10.1016/j.jclepro.2017.04.052 | es_ES |
dc.description.references | Hooton, R. D., & Bickley, J. A. (2014). Design for durability: The key to improving concrete sustainability. Construction and Building Materials, 67, 422-430. doi:10.1016/j.conbuildmat.2013.12.016 | es_ES |
dc.description.references | Kim, T., Lee, S., Chae, C., Jang, H., & Lee, K. (2017). Development of the CO2 Emission Evaluation Tool for the Life Cycle Assessment of Concrete. Sustainability, 9(11), 2116. doi:10.3390/su9112116 | es_ES |
dc.description.references | Kurda, R., Silvestre, J. D., & de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139, 407-417. doi:10.1016/j.resconrec.2018.07.004 | es_ES |
dc.description.references | Kurda, R., de Brito, J., & Silvestre, J. D. (2019). CONCRETop - A multi-criteria decision method for concrete optimization. Environmental Impact Assessment Review, 74, 73-85. doi:10.1016/j.eiar.2018.10.006 | es_ES |
dc.description.references | Mahima, S., Moorthi, P. V. P., Bahurudeen, A., & Gopinath, A. (2018). Influence of chloride threshold value in service life prediction of reinforced concrete structures. Sādhanā, 43(7). doi:10.1007/s12046-018-0863-5 | es_ES |
dc.description.references | Marinković, S., Dragaš, J., Ignjatović, I., & Tošić, N. (2017). Environmental assessment of green concretes for structural use. Journal of Cleaner Production, 154, 633-649. doi:10.1016/j.jclepro.2017.04.015 | es_ES |
dc.description.references | Markeset, G., & Kioumarsi, M. (2017). Need for Further Development in Service Life Modelling of Concrete Structures in Chloride Environment. Procedia Engineering, 171, 549-556. doi:10.1016/j.proeng.2017.01.371 | es_ES |
dc.description.references | Miller, S. A. (2018). Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing? Journal of Cleaner Production, 178, 587-598. doi:10.1016/j.jclepro.2018.01.008 | es_ES |
dc.description.references | Miller, S. A., Monteiro, P. J. M., Ostertag, C. P., & Horvath, A. (2016). Concrete mixture proportioning for desired strength and reduced global warming potential. Construction and Building Materials, 128, 410-421. doi:10.1016/j.conbuildmat.2016.10.081 | es_ES |
dc.description.references | Müller, H. S., Haist, M., & Vogel, M. (2014). Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Construction and Building Materials, 67, 321-337. doi:10.1016/j.conbuildmat.2014.01.039 | es_ES |
dc.description.references | Nagaratnam, B. H., Mannan, M. A., Rahman, M. E., Mirasa, A. K., Richardson, A., & Nabinejad, O. (2019). Strength and microstructural characteristics of palm oil fuel ash and fly ash as binary and ternary blends in Self-Compacting concrete. Construction and Building Materials, 202, 103-120. doi:10.1016/j.conbuildmat.2018.12.139 | es_ES |
dc.description.references | Panesar, D. K., Seto, K. E., & Churchill, C. J. (2017). Impact of the selection of functional unit on the life cycle assessment of green concrete. The International Journal of Life Cycle Assessment, 22(12), 1969-1986. doi:10.1007/s11367-017-1284-0 | es_ES |
dc.description.references | Rahla, K. M., Mateus, R., & Bragança, L. (2019). Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). Journal of Cleaner Production, 220, 445-459. doi:10.1016/j.jclepro.2019.02.010 | es_ES |
dc.description.references | Serres, N., Braymand, S., & Feugeas, F. (2016). Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment. Journal of Building Engineering, 5, 24-33. doi:10.1016/j.jobe.2015.11.004 | es_ES |
dc.description.references | Shan, X., Zhou, J., Chang, V. W.-C., & Yang, E.-H. (2017). Life cycle assessment of adoption of local recycled aggregates and green concrete in Singapore perspective. Journal of Cleaner Production, 164, 918-926. doi:10.1016/j.jclepro.2017.07.015 | es_ES |
dc.description.references | Silva, R. V., Neves, R., de Brito, J., & Dhir, R. K. (2015). Carbonation behaviour of recycled aggregate concrete. Cement and Concrete Composites, 62, 22-32. doi:10.1016/j.cemconcomp.2015.04.017 | es_ES |
dc.description.references | Souto-Martinez, A., Delesky, E. A., Foster, K. E. O., & Srubar, W. V. (2017). A mathematical model for predicting the carbon sequestration potential of ordinary portland cement (OPC) concrete. Construction and Building Materials, 147, 417-427. doi:10.1016/j.conbuildmat.2017.04.133 | es_ES |
dc.description.references | Srubar, W. V. (2015). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement and Concrete Composites, 55, 103-111. doi:10.1016/j.cemconcomp.2014.09.003 | es_ES |
dc.description.references | Suárez Silgado, S., Calderón Valdiviezo, L., Gassó Domingo, S., & Roca, X. (2018). Multi-criteria decision analysis to assess the environmental and economic performance of using recycled gypsum cement and recycled aggregate to produce concrete: The case of Catalonia (Spain). Resources, Conservation and Recycling, 133, 120-131. doi:10.1016/j.resconrec.2017.11.023 | es_ES |
dc.description.references | Tait, M. W., & Cheung, W. M. (2016). A comparative cradle-to-gate life cycle assessment of three concrete mix designs. The International Journal of Life Cycle Assessment, 21(6), 847-860. doi:10.1007/s11367-016-1045-5 | es_ES |
dc.description.references | Teh, S. H., Wiedmann, T., Castel, A., & de Burgh, J. (2017). Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312-320. doi:10.1016/j.jclepro.2017.03.122 | es_ES |
dc.description.references | Teixeira, E. R., Mateus, R., Camões, A. F., Bragança, L., & Branco, F. G. (2016). Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, 112, 2221-2230. doi:10.1016/j.jclepro.2015.09.124 | es_ES |
dc.description.references | Tošić, N., Marinković, S., Dašić, T., & Stanić, M. (2015). Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production, 87, 766-776. doi:10.1016/j.jclepro.2014.10.070 | es_ES |
dc.description.references | Turk, J., Cotič, Z., Mladenovič, A., & Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45, 194-205. doi:10.1016/j.wasman.2015.06.035 | es_ES |
dc.description.references | Wang, J., Wang, Y., Sun, Y., Tingley, D. D., & Zhang, Y. (2017). Life cycle sustainability assessment of fly ash concrete structures. Renewable and Sustainable Energy Reviews, 80, 1162-1174. doi:10.1016/j.rser.2017.05.232 | es_ES |
dc.description.references | Wu, K.-R., Chen, B., Yao, W., & Zhang, D. (2001). Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cement and Concrete Research, 31(10), 1421-1425. doi:10.1016/s0008-8846(01)00588-9 | es_ES |
dc.description.references | Wu, P., Xia, B., & Zhao, X. (2014). The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete – A review. Renewable and Sustainable Energy Reviews, 37, 360-369. doi:10.1016/j.rser.2014.04.070 | es_ES |
dc.description.references | Yang, K.-H., Seo, E.-A., Jung, Y.-B., & Tae, S.-H. (2014). Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete. Journal of the Korea Concrete Institute, 26(1), 13-21. doi:10.4334/jkci.2014.26.1.013 | es_ES |
dc.description.references | Zhang, Y.-R., Wu, W.-J., & Wang, Y.-F. (2016). Bridge life cycle assessment with data uncertainty. The International Journal of Life Cycle Assessment, 21(4), 569-576. doi:10.1007/s11367-016-1035-7 | es_ES |