- -

Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions

Show full item record

Zhou, Z.; Alcalá-González, J.; Yepes, V. (2021). Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions. International Journal of Environmental research and Public Health. 18(1):1-33. https://doi.org/10.3390/ijerph18010122

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163289

Files in this item

Item Metadata

Title: Environmental, Economic and Social Impact Assessment: Study of Bridges in China's Five Major Economic Regions
Author: Zhou, ZhiWu Alcalá-González, Julián Yepes, V.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
[EN] The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) ...[+]
Subjects: Sustainable development , LCIA , LCCA , SILA , Cable-stayed bridge , GDP
Copyrigths: Reconocimiento (by)
International Journal of Environmental research and Public Health. (eissn: 1660-4601 )
DOI: 10.3390/ijerph18010122
Publisher version: https://doi.org/10.3390/ijerph18010122
Project ID:
This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R.
Type: Artículo


ISO 14044:2006/AMD 1:2017. Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/72357.html

Wuni, I. Y., Shen, G. Q. P., & Osei-Kyei, R. (2019). Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, 190, 69-85. doi:10.1016/j.enbuild.2019.02.010

World Population in 2050https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html [+]
ISO 14044:2006/AMD 1:2017. Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/72357.html

Wuni, I. Y., Shen, G. Q. P., & Osei-Kyei, R. (2019). Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, 190, 69-85. doi:10.1016/j.enbuild.2019.02.010

World Population in 2050https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

Huisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling. Journal of Cleaner Production, 103, 1-12. doi:10.1016/j.jclepro.2015.04.098

Zhang, X. (2014). Toward a regenerative sustainability paradigm for the built environment: from vision to reality. Journal of Cleaner Production, 65, 3-6. doi:10.1016/j.jclepro.2013.08.025

Summary for Policymakers, Climate Change 2014: Mitigation of Climate Changehttps://www.buildup.eu/en/practices/publications/ipcc-2014-climate-change-2014-mitigation-climate-change-contribution-working

Dong, Y. H., & Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. The International Journal of Life Cycle Assessment, 20(8), 1166-1180. doi:10.1007/s11367-015-0908-5

Hellweg, S., & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109-1113. doi:10.1126/science.1248361

Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., … Zachos, J. C. (2008). Target Atmospheric CO: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2(1), 217-231. doi:10.2174/1874282300802010217

WMO Statement on the State of the Global Climate in 2016https://library.wmo.int/doc_num.php?explnum_id=3414

Lin, B., & Liu, H. (2015). CO2 emissions of China’s commercial and residential buildings: Evidence and reduction policy. Building and Environment, 92, 418-431. doi:10.1016/j.buildenv.2015.05.020

Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074

OpenLCA 1.10http://www.openlca.org/openlca/

ISO,14044:2006/AMD 2:2020, Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISOhttps://www.iso.org/standard/76122.html

Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110

O’Born, R. (2018). Life cycle assessment of large scale timber bridges: A case study from the world’s longest timber bridge design in Norway. Transportation Research Part D: Transport and Environment, 59, 301-312. doi:10.1016/j.trd.2018.01.018

Milani, C. J., & Kripka, M. (2019). Evaluation of short span bridge projects with a focus on sustainability. Structure and Infrastructure Engineering, 16(2), 367-380. doi:10.1080/15732479.2019.1662815

Trunzo, G., Moretti, L., & D’Andrea, A. (2019). Life Cycle Analysis of Road Construction and Use. Sustainability, 11(2), 377. doi:10.3390/su11020377

Li, H., Deng, Q., Zhang, J., Xia, B., & Skitmore, M. (2019). Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 210, 1496-1506. doi:10.1016/j.jclepro.2018.11.102

Frangopol, D. M., Dong, Y., & Sabatino, S. (2017). Bridge life-cycle performance and cost: analysis, prediction, optimisation and decision-making. Structure and Infrastructure Engineering, 13(10), 1239-1257. doi:10.1080/15732479.2016.1267772

Goh, K. C., Goh, H. H., & Chong, H.-Y. (2019). Integration Model of Fuzzy AHP and Life-Cycle Cost Analysis for Evaluating Highway Infrastructure Investments. Journal of Infrastructure Systems, 25(1), 04018045. doi:10.1061/(asce)is.1943-555x.0000473

Heidari, M. R., Heravi, G., & Esmaeeli, A. N. (2020). Integrating life-cycle assessment and life-cycle cost analysis to select sustainable pavement: A probabilistic model using managerial flexibilities. Journal of Cleaner Production, 254, 120046. doi:10.1016/j.jclepro.2020.120046

Wang, Z., Yang, D. Y., Frangopol, D. M., & Jin, W. (2019). Inclusion of environmental impacts in life-cycle cost analysis of bridge structures. Sustainable and Resilient Infrastructure, 5(4), 252-267. doi:10.1080/23789689.2018.1542212

Cadenazzi, T., Dotelli, G., Rossini, M., Nolan, S., & Nanni, A. (2019). Life-Cycle Cost and Life-Cycle Assessment Analysis at the Design Stage of a Fiber-Reinforced Polymer-Reinforced Concrete Bridge in Florida. Advances in Civil Engineering Materials, 8(2), 20180113. doi:10.1520/acem20180113

Social Impact Assessment (SIA)https://www.iucn.org/sites/dev/files/iucn_esms_sia_guidance_note.pdf

Zhang, A., Zhong, R. Y., Farooque, M., Kang, K., & Venkatesh, V. G. (2020). Blockchain-based life cycle assessment: An implementation framework and system architecture. Resources, Conservation and Recycling, 152, 104512. doi:10.1016/j.resconrec.2019.104512

Parent, J., Cucuzzella, C., & Revéret, J.-P. (2010). Impact assessment in SLCA: sorting the sLCIA methods according to their outcomes. The International Journal of Life Cycle Assessment, 15(2), 164-171. doi:10.1007/s11367-009-0146-9

Vanclay, F. (2019). Reflections on Social Impact Assessment in the 21st century. Impact Assessment and Project Appraisal, 38(2), 126-131. doi:10.1080/14615517.2019.1685807

Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092

Parsons, R. (2019). Forces for change in social impact assessment. Impact Assessment and Project Appraisal, 38(4), 278-286. doi:10.1080/14615517.2019.1692585

Vanclay, F. (2003). International Principles for Social Impact Assessment: their evolution. Impact Assessment and Project Appraisal, 21(1), 3-4. doi:10.3152/147154603781766464

Domínguez-Gómez, J. A. (2016). Four conceptual issues to consider in integrating social and environmental factors in risk and impact assessments. Environmental Impact Assessment Review, 56, 113-119. doi:10.1016/j.eiar.2015.09.009

Fischer, T. B., Jha-Thakur, U., Fawcett, P., Clement, S., Hayes, S., & Nowacki, J. (2017). Consideration of urban green space in impact assessments for health. Impact Assessment and Project Appraisal, 36(1), 32-44. doi:10.1080/14615517.2017.1364021

Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. The International Journal of Life Cycle Assessment, 25(11), 2140-2153. doi:10.1007/s11367-020-01825-6

Balasbaneh, A. T., Marsono, A. K. B., & Khaleghi, S. J. (2018). Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. Journal of Building Engineering, 20, 235-247. doi:10.1016/j.jobe.2018.07.006

Penadés-Plà, V., Martínez-Muñoz, D., García-Segura, T., Navarro, I. J., & Yepes, V. (2020). Environmental and Social Impact Assessment of Optimized Post-Tensioned Concrete Road Bridges. Sustainability, 12(10), 4265. doi:10.3390/su12104265

Ali, M. S., Aslam, M. S., & Mirza, M. S. (2015). A sustainability assessment framework for bridges – a case study: Victoria and Champlain Bridges, Montreal. Structure and Infrastructure Engineering, 1-14. doi:10.1080/15732479.2015.1120754

Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89-95. doi:10.1065/lca2008.02.376

Hu, M. (2019). Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resources, Conservation and Recycling, 150, 104410. doi:10.1016/j.resconrec.2019.104410


The Regional Catalan Governmenthttps://en.itec.cat/database/

Psilca Greendatebasehttps://psilca.net/

Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28-39. doi:10.1016/j.conbuildmat.2007.11.012

Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73-89. doi:10.1016/j.enbuild.2013.04.018

Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007

Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394-416. doi:10.1016/j.rser.2013.08.037

Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy, 143, 395-413. doi:10.1016/j.apenergy.2015.01.023

Baker, L. (2018). Of embodied emissions and inequality: Rethinking energy consumption. Energy Research & Social Science, 36, 52-60. doi:10.1016/j.erss.2017.09.027

Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094

Walker, S., & Rothman, R. (2020). Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production, 261, 121158. doi:10.1016/j.jclepro.2020.121158


New Version ReCiPe 2016 to Determine Environmental Impact|RIVMhttps://www.rivm.nl/en/news/new-version-recipe-2016-to-determine-environmental-impact

Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864

Zhou, Z., Alcalá, J., & Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16), 5953. doi:10.3390/ijerph17165953


Lee, K.-M., Cho, H.-N., & Cha, C.-J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252-1265. doi:10.1016/j.engstruct.2005.12.008

Navarro, I. J., Penadés-Plà, V., Martínez-Muñoz, D., Rempling, R., & Yepes, V. (2020). LIFE CYCLE SUSTAINABILITY ASSESSMENT FOR MULTI-CRITERIA DECISION MAKING IN BRIDGE DESIGN: A REVIEW. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 26(7), 690-704. doi:10.3846/jcem.2020.13599

García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177

Jang, B., & Mohammadi, J. (2019). Impact of fatigue damage from overloads on bridge life-cycle cost analysis. Bridge Structures, 15(4), 181-186. doi:10.3233/brs-190153

Matos, J., Solgaard, A., Santos, C., Silva, M. S., Linneberg, P., Strauss, A., … Akiyama, M. (2017). Life Cycle Cost, As a Tool for Decision Making on Concrete Infrastructures. High Tech Concrete: Where Technology and Engineering Meet, 1832-1839. doi:10.1007/978-3-319-59471-2_210

Edited by the Ministry of Construction, National Development and Reform Commission, 2002. Engineering Survey and Design Charging Standardshttps://wenku.baidu.com/view/3fa74a62effdc8d376eeaeaad1f34693daef1088.html

Rossi, B., Marquart, S., & Rossi, G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. Journal of Environmental Management, 197, 41-49. doi:10.1016/j.jenvman.2017.03.022

Wang, H., Schandl, H., Wang, X., Ma, F., Yue, Q., Wang, G., … Zheng, R. (2020). Measuring progress of China’s circular economy. Resources, Conservation and Recycling, 163, 105070. doi:10.1016/j.resconrec.2020.105070

Wang, D., Liu, Q., Ma, L., Zhang, Y., & Cong, H. (2019). Road traffic accident severity analysis: A census-based study in China. Journal of Safety Research, 70, 135-147. doi:10.1016/j.jsr.2019.06.002

Van der Vlegel, M., Haagsma, J. A., de Munter, L., de Jongh, M. A. C., & Polinder, S. (2020). Health Care and Productivity Costs of Non-Fatal Traffic Injuries: A Comparison of Road User Types. International Journal of Environmental Research and Public Health, 17(7), 2217. doi:10.3390/ijerph17072217

Al-Rukaibi, F., AlKheder, S., AlOtaibi, N., & Almutairi, M. (2019). Traffic crashes cost estimation in Kuwait. International Journal of Crashworthiness, 25(2), 203-212. doi:10.1080/13588265.2019.1567966

Jiménez, J. R., Ayuso, J., Agrela, F., López, M., & Galvín, A. P. (2012). Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resources, Conservation and Recycling, 58, 88-97. doi:10.1016/j.resconrec.2011.10.012

Tavira, J., Jiménez, J. R., Ayuso, J., Sierra, M. J., & Ledesma, E. F. (2018). Functional and structural parameters of a paved road section constructed with mixed recycled aggregates from non-selected construction and demolition waste with excavation soil. Construction and Building Materials, 164, 57-69. doi:10.1016/j.conbuildmat.2017.12.195

Sangiorgi, C., Lantieri, C., & Dondi, G. (2014). Construction and demolition waste recycling: an application for road construction. International Journal of Pavement Engineering, 16(6), 530-537. doi:10.1080/10298436.2014.943134

Prenzel, P. V., & Vanclay, F. (2014). How social impact assessment can contribute to conflict management. Environmental Impact Assessment Review, 45, 30-37. doi:10.1016/j.eiar.2013.11.003

Vanclay, F. (2003). International Principles For Social Impact Assessment. Impact Assessment and Project Appraisal, 21(1), 5-12. doi:10.3152/147154603781766491

Esteves, A. M., Franks, D., & Vanclay, F. (2012). Social impact assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 34-42. doi:10.1080/14615517.2012.660356

Sierra, L. A., Pellicer, E., & Yepes, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65, 41-53. doi:10.1016/j.eiar.2017.02.004

Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003


PSILCA-A Product Social Impact Life Cycle Assessment Database Database Version 1.0https://www.openlca.org/wp-content/uploads/2016/08/PSILCA_documentation_v1.1.pdf

Geographical Division of China-Wikiwand. Wikihttps://www.wikiwand.com/en/Geography_of_China

List of New Cities in China-Wikiwandhttps://m.sohu.com/n/486287408/

Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle Ownership and Income Growth, Worldwide: 1960-2030. The Energy Journal, 28(4). doi:10.5547/issn0195-6574-ej-vol28-no4-7

Wu, T., Zhang, M., & Ou, X. (2014). Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model. Energies, 7(11), 7454-7482. doi:10.3390/en7117454

Shi, Y., Guo, S., & Sun, P. (2017). The role of infrastructure in China’s regional economic growth. Journal of Asian Economics, 49, 26-41. doi:10.1016/j.asieco.2017.02.004

International Association for Impact Assessment Purpose and Intended Readershiphttps://www.socialimpactassessment.com/documents/IAIA%202015%20Social%20Impact%20Assessment%20guidance%20document.pdf

Appiah-Opoku, S. (2015). Land access and resettlement: a guide to best practice, by Gerry Reddy, Eddie Smyth, and Michael Steyn. Impact Assessment and Project Appraisal, 33(4), 290-290. doi:10.1080/14615517.2015.1069667

Virtual de Publicaciones del M. de. 2010. Code on Structural Concrete (EHE-08) Articles and Annexeshttp://asidac.es/asidac-en/wp-content/uploads/2016/07/EHE-ENG.pdf

Suzuki, S., & Nijkamp, P. (2016). An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis. Energy Policy, 88, 100-112. doi:10.1016/j.enpol.2015.10.007




This item appears in the following Collection(s)

Show full item record