- -

Comprehensive decision-making approach for managing time dependent dam risks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comprehensive decision-making approach for managing time dependent dam risks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fluixá Sanmartín, Javier es_ES
dc.contributor.author Escuder Bueno, Ignacio es_ES
dc.contributor.author Morales Torres, Adrián es_ES
dc.contributor.author Castillo-Rodríguez, J.T. es_ES
dc.date.accessioned 2021-03-06T04:32:08Z
dc.date.available 2021-03-06T04:32:08Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0951-8320 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163293
dc.description.abstract [EN] Dams are critical infrastructures whose safety must be properly managed. Traditional decision-making approaches often assume the stationarity of factors defining risk. However, dam risk is susceptible to evolve with time. Risk can no longer be considered a static but a time-dependent concept which cumulative value must be reduced for different timescales. A broader perspective to dynamically evaluate time issues in the prioritization of measures is thus required. A new approach is proposed for dam risk management in the long term that considers the potential evolution of risk. A new time-dependent risk indicator that allows assessing the efficiency of adaptation measures in optimally reducing dam risks has been defined: the Aggregated Adjusted Cost per Statistical Life Saved (AACSLS). Its use makes it possible to better design risk reduction measures and to plan the implementation sequence that maximizes their effectiveness. The methodology has been applied to the case study of a Spanish dam under the effects of climate change. Different risk reduction measures have been proposed and their effects have been analyzed for a specific time horizon. The use of the AACSLS indicator has allowed identifying the prioritization of measures that optimizes the allocation of economic resources in the long term. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Reliability Engineering & System Safety es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dam safety management es_ES
dc.subject Decision-making es_ES
dc.subject Long term es_ES
dc.subject Climate change es_ES
dc.subject Risk reduction es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Comprehensive decision-making approach for managing time dependent dam risks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ress.2020.107100 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Fluixá Sanmartín, J.; Escuder Bueno, I.; Morales Torres, A.; Castillo-Rodríguez, J. (2020). Comprehensive decision-making approach for managing time dependent dam risks. Reliability Engineering & System Safety. 203:1-11. https://doi.org/10.1016/j.ress.2020.107100 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ress.2020.107100 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 203 es_ES
dc.relation.pasarela S\415673 es_ES
dc.description.references Fluixá-Sanmartín, J., Altarejos-García, L., Morales-Torres, A., & Escuder-Bueno, I. (2018). Review article: Climate change impacts on dam safety. Natural Hazards and Earth System Sciences, 18(9), 2471-2488. doi:10.5194/nhess-18-2471-2018 es_ES
dc.description.references Benjamin, J. R. (1982). Risk and decision analyses applied to dams and levees. Structural Safety, 1(4), 257-268. doi:10.1016/0167-4730(82)90002-9 es_ES
dc.description.references Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Stationarity Is Dead: Whither Water Management? Science, 319(5863), 573-574. doi:10.1126/science.1151915 es_ES
dc.description.references CH2014-Impacts. Toward Quantitative Scenarios of Climate Change Impacts in Switzerland, published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, Switzerland, 2014 136 pp. es_ES
dc.description.references Lee, B.-S., & You, G. J.-Y. (2013). An assessment of long-term overtopping risk and optimal termination time of dam under climate change. Journal of Environmental Management, 121, 57-71. doi:10.1016/j.jenvman.2013.02.025 es_ES
dc.description.references Bouwer, L. M. (2011). Have Disaster Losses Increased Due to Anthropogenic Climate Change? Bulletin of the American Meteorological Society, 92(1), 39-46. doi:10.1175/2010bams3092.1 es_ES
dc.description.references Changnon, S. A., Pielke, R. A., Changnon, D., Sylves, R. T., & Pulwarty, R. (2000). Human Factors Explain the Increased Losses from Weather and Climate Extremes*. Bulletin of the American Meteorological Society, 81(3), 437-442. doi:10.1175/1520-0477(2000)081<0437:hfetil>2.3.co;2 es_ES
dc.description.references Fischer, G., Tubiello, F. N., van Velthuizen, H., & Wiberg, D. A. (2007). Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technological Forecasting and Social Change, 74(7), 1083-1107. doi:10.1016/j.techfore.2006.05.021 es_ES
dc.description.references Solaun, K., & Cerdá, E. (2017). The Impact of Climate Change on the Generation of Hydroelectric Power—A Case Study in Southern Spain. Energies, 10(9), 1343. doi:10.3390/en10091343 es_ES
dc.description.references Rodríguez Díaz, J. A., Weatherhead, E. K., Knox, J. W., & Camacho, E. (2007). Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Regional Environmental Change, 7(3), 149-159. doi:10.1007/s10113-007-0035-3 es_ES
dc.description.references White, S. (2005). Sediment yield prediction and modelling. Hydrological Processes, 19(15), 3053-3057. doi:10.1002/hyp.6003 es_ES
dc.description.references Lind, N. (2002). Time effects in criteria for acceptable risk. Reliability Engineering & System Safety, 78(1), 27-31. doi:10.1016/s0951-8320(02)00052-2 es_ES
dc.description.references USACE. Climate Change Adaptation Plan. U.S. Army Corps of Engineers Committee on Climate Preparedness and Resilience; 2014. es_ES
dc.description.references Chen, H.-P., & Mehrabani, M. B. (2019). Reliability analysis and optimum maintenance of coastal flood defences using probabilistic deterioration modelling. Reliability Engineering & System Safety, 185, 163-174. doi:10.1016/j.ress.2018.12.021 es_ES
dc.description.references Buijs, F. A., Hall, J. W., Sayers, P. B., & Van Gelder, P. H. A. J. M. (2009). Time-dependent reliability analysis of flood defences. Reliability Engineering & System Safety, 94(12), 1942-1953. doi:10.1016/j.ress.2009.06.012 es_ES
dc.description.references Lind, N. (2002). Social and economic criteria of acceptable risk. Reliability Engineering & System Safety, 78(1), 21-25. doi:10.1016/s0951-8320(02)00051-0 es_ES
dc.description.references Hall, J. W., Brown, S., Nicholls, R. J., Pidgeon, N. F., & Watson, R. T. (2012). Proportionate adaptation. Nature Climate Change, 2(12), 833-834. doi:10.1038/nclimate1749 es_ES
dc.description.references Faber, M. H., & Stewart, M. G. (2003). Risk assessment for civil engineering facilities: critical overview and discussion. Reliability Engineering & System Safety, 80(2), 173-184. doi:10.1016/s0951-8320(03)00027-9 es_ES
dc.description.references Kaplan, S. (1997). The Words of Risk Analysis. Risk Analysis, 17(4), 407-417. doi:10.1111/j.1539-6924.1997.tb00881.x es_ES
dc.description.references Serrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G., & Altarejos-García, L. (2010). Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams. Risk Analysis, 31(6), 1000-1015. doi:10.1111/j.1539-6924.2010.01547.x es_ES
dc.description.references Canadian Dam Association. Dam safety guidelines 2007. 2013. es_ES
dc.description.references Li, S., Zhou, X., Wang, Y., Zhou, J., Du, X., & Chen, Z. (2015). Study of risk acceptance criteria for dams. Science China Technological Sciences, 58(7), 1263-1271. doi:10.1007/s11431-015-5864-6 es_ES
dc.description.references Morales-Torres A., Serrano-Lombillo A., Escuder-Bueno I., Altarejos-García L. The suitability of risk reduction indicators to inform dam safety management. Struct Infrastruct Eng2016:1–12. doi:10.1007/s11431-015-5864-6. es_ES
dc.description.references Serrano-Lombillo, A., Morales-Torres, A., Escuder-Bueno, I., & Altarejos-García, L. (2016). A new risk reduction indicator for dam safety management combining efficiency and equity principles. Structure and Infrastructure Engineering, 13(9), 1157-1166. doi:10.1080/15732479.2016.1245762 es_ES
dc.description.references Baecher, G. B., Paté, M. E., & De Neufville, R. (1980). Risk of dam failure in benefit-cost analysis. Water Resources Research, 16(3), 449-456. doi:10.1029/wr016i003p00449 es_ES
dc.description.references Palmieri, A., Shah, F., & Dinar, A. (2001). Economics of reservoir sedimentation and sustainable management of dams. Journal of Environmental Management, 61(2), 149-163. doi:10.1006/jema.2000.0392 es_ES
dc.description.references Paté-Cornell, M. E., & Tagaras, G. (1986). Risk Costs for New Dams: Economic Analysis and Effects of Monitoring. Water Resources Research, 22(1), 5-14. doi:10.1029/wr022i001p00005 es_ES
dc.description.references Stewart, M. G., & Mueller, J. (2008). A risk and cost-benefit assessment of United States aviation security measures. Journal of Transportation Security, 1(3), 143-159. doi:10.1007/s12198-008-0013-0 es_ES
dc.description.references Lutter, R., Morrall, J. F., & Viscusi, W. K. (1999). THE COST-PER-LIFE-SAVED CUTOFF FOR SAFETY-ENHANCING REGULATIONS. Economic Inquiry, 37(4), 599-608. doi:10.1111/j.1465-7295.1999.tb01450.x es_ES
dc.description.references Ramsberg, J. A. L., & Sjoberg, L. (1997). The Cost-Effectiveness of Lifesaving Interventions in Sweden. Risk Analysis, 17(4), 467-478. doi:10.1111/j.1539-6924.1997.tb00887.x es_ES
dc.description.references Khadam, I. M., & Kaluarachchi, J. J. (2003). Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water. Environmental Impact Assessment Review, 23(6), 683-721. doi:10.1016/s0195-9255(03)00117-3 es_ES
dc.description.references De Blaeij, A., Florax, R. J. G. ., Rietveld, P., & Verhoef, E. (2003). The value of statistical life in road safety: a meta-analysis. Accident Analysis & Prevention, 35(6), 973-986. doi:10.1016/s0001-4575(02)00105-7 es_ES
dc.description.references Fluixá-Sanmartín J., Morales-Torres A., Escuder-Bueno I., Paredes-Arquiola J. Quantification of climate change impact on dam failure risk under hydrological scenarios: a case study from a Spanish dam. Nat Hazard Earth Syst Sci Discuss2019:1–31. doi:10.5194/nhess-2019-141. es_ES
dc.description.references Lind, N. (2007). Discounting risks in the far future. Reliability Engineering & System Safety, 92(10), 1328-1332. doi:10.1016/j.ress.2006.09.001 es_ES
dc.description.references Diewert, W. E. (1983). Cost-benefit analysis and project evaluation. Journal of Public Economics, 22(3), 265-302. doi:10.1016/0047-2727(83)90037-3 es_ES
dc.description.references Annema, J. A., Mouter, N., & Razaei, J. (2015). Cost-benefit Analysis (CBA), or Multi-criteria Decision-making (MCDM) or Both: Politicians’ Perspective in Transport Policy Appraisal. Transportation Research Procedia, 10, 788-797. doi:10.1016/j.trpro.2015.09.032 es_ES
dc.description.references Beria, P., Maltese, I., & Mariotti, I. (2012). Multicriteria versus Cost Benefit Analysis: a comparative perspective in the assessment of sustainable mobility. European Transport Research Review, 4(3), 137-152. doi:10.1007/s12544-012-0074-9 es_ES
dc.description.references Rackwitz, R., Lentz, A., & Faber, M. (2005). Socio-economically sustainable civil engineering infrastructures by optimization. Structural Safety, 27(3), 187-229. doi:10.1016/j.strusafe.2004.10.002 es_ES
dc.description.references Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., … Yiou, P. (2013). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563-578. doi:10.1007/s10113-013-0499-2 es_ES
dc.description.references Morales-Torres, A., Escuder-Bueno, I., Serrano-Lombillo, A., & Castillo Rodríguez, J. T. (2019). Dealing with epistemic uncertainty in risk-informed decision making for dam safety management. Reliability Engineering & System Safety, 191, 106562. doi:10.1016/j.ress.2019.106562 es_ES
dc.description.references Delenne, C., Cappelaere, B., & Guinot, V. (2012). Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations. Reliability Engineering & System Safety, 107, 171-183. doi:10.1016/j.ress.2012.04.007 es_ES
dc.description.references Walker, W., Haasnoot, M., & Kwakkel, J. (2013). Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability, 5(3), 955-979. doi:10.3390/su5030955 es_ES
dc.description.references Walker, W. E., Rahman, S. A., & Cave, J. (2001). Adaptive policies, policy analysis, and policy-making. European Journal of Operational Research, 128(2), 282-289. doi:10.1016/s0377-2217(00)00071-0 es_ES
dc.description.references Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E. van, & Deursen, W. P. A. van. (2012). Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change, 115(3-4), 795-819. doi:10.1007/s10584-012-0444-2 es_ES
dc.description.references Gersonius, B., Morselt, T., van Nieuwenhuijzen, L., Ashley, R., & Zevenbergen, C. (2012). How the Failure to Account for Flexibility in the Economic Analysis of Flood Risk and Coastal Management Strategies Can Result in Maladaptive Decisions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(5), 386-393. doi:10.1061/(asce)ww.1943-5460.0000142 es_ES
dc.description.references Park, T., Kim, C., & Kim, H. (2013). Valuation of Drainage Infrastructure Improvement Under Climate Change Using Real Options. Water Resources Management, 28(2), 445-457. doi:10.1007/s11269-013-0492-z es_ES
dc.description.references Dirección General de Carreteras. Base de precios de referencia. 2016. URL: http://normativa.itafec.com/proyecto/ES.03.02.001.OC.pdf. es_ES
dc.description.references European Commission. Adapting infrastructure to climate change, 2020. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem